This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nrginvrcn.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| nrginvrcn.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| nrginvrcn.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| nrginvrcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | ||
| Assertion | nrginvrcn | ⊢ ( 𝑅 ∈ NrmRing → 𝐼 ∈ ( ( 𝐽 ↾t 𝑈 ) Cn ( 𝐽 ↾t 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrginvrcn.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| 2 | nrginvrcn.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | nrginvrcn.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 4 | nrginvrcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | |
| 5 | nrgring | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring ) | |
| 6 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | |
| 7 | 2 6 | unitgrp | ⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ) |
| 8 | 2 6 | unitgrpbas | ⊢ 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 9 | 2 6 3 | invrfval | ⊢ 𝐼 = ( invg ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 10 | 8 9 | grpinvf | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp → 𝐼 : 𝑈 ⟶ 𝑈 ) |
| 11 | 5 7 10 | 3syl | ⊢ ( 𝑅 ∈ NrmRing → 𝐼 : 𝑈 ⟶ 𝑈 ) |
| 12 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 13 | 12 | ne0ii | ⊢ ℝ+ ≠ ∅ |
| 14 | 5 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
| 15 | 1 2 | unitss | ⊢ 𝑈 ⊆ 𝑋 |
| 16 | simplrl | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) | |
| 17 | 15 16 | sselid | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑥 ∈ 𝑋 ) |
| 18 | simpr | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ 𝑈 ) | |
| 19 | 15 18 | sselid | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ 𝑋 ) |
| 20 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 21 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 22 | 1 20 21 | ring1eq0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → 𝑥 = 𝑦 ) ) |
| 23 | 14 17 19 22 | syl3anc | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → 𝑥 = 𝑦 ) ) |
| 24 | eqid | ⊢ ( 𝐼 ‘ 𝑦 ) = ( 𝐼 ‘ 𝑦 ) | |
| 25 | nrgngp | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp ) | |
| 26 | ngpms | ⊢ ( 𝑅 ∈ NrmGrp → 𝑅 ∈ MetSp ) | |
| 27 | msxms | ⊢ ( 𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp ) | |
| 28 | 25 26 27 | 3syl | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ ∞MetSp ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑅 ∈ ∞MetSp ) |
| 30 | 11 | adantr | ⊢ ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 : 𝑈 ⟶ 𝑈 ) |
| 31 | 30 | ffvelcdmda | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑦 ) ∈ 𝑈 ) |
| 32 | 15 31 | sselid | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑦 ) ∈ 𝑋 ) |
| 33 | eqid | ⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) | |
| 34 | 1 33 | xmseq0 | ⊢ ( ( 𝑅 ∈ ∞MetSp ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝑋 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝑋 ) → ( ( ( 𝐼 ‘ 𝑦 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) = 0 ↔ ( 𝐼 ‘ 𝑦 ) = ( 𝐼 ‘ 𝑦 ) ) ) |
| 35 | 29 32 32 34 | syl3anc | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( ( 𝐼 ‘ 𝑦 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) = 0 ↔ ( 𝐼 ‘ 𝑦 ) = ( 𝐼 ‘ 𝑦 ) ) ) |
| 36 | 24 35 | mpbiri | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝐼 ‘ 𝑦 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) = 0 ) |
| 37 | simplrr | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑟 ∈ ℝ+ ) | |
| 38 | 37 | rpgt0d | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 0 < 𝑟 ) |
| 39 | 36 38 | eqbrtrd | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝐼 ‘ 𝑦 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) |
| 40 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) ) | |
| 41 | 40 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) = ( ( 𝐼 ‘ 𝑦 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 42 | 41 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ↔ ( ( 𝐼 ‘ 𝑦 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 43 | 39 42 | syl5ibrcom | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 = 𝑦 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 44 | 23 43 | syld | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 45 | 44 | imp | ⊢ ( ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) |
| 46 | 45 | an32s | ⊢ ( ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) |
| 47 | 46 | a1d | ⊢ ( ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 48 | 47 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 49 | 48 | ralrimivw | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 50 | r19.2z | ⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) | |
| 51 | 13 49 50 | sylancr | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 52 | eqid | ⊢ ( norm ‘ 𝑅 ) = ( norm ‘ 𝑅 ) | |
| 53 | simpll | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ NrmRing ) | |
| 54 | 5 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 55 | simpr | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) | |
| 56 | 20 21 | isnzr | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 57 | 54 55 56 | sylanbrc | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ NzRing ) |
| 58 | simplrl | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ 𝑈 ) | |
| 59 | simplrr | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑟 ∈ ℝ+ ) | |
| 60 | eqid | ⊢ ( if ( 1 ≤ ( ( ( norm ‘ 𝑅 ) ‘ 𝑥 ) · 𝑟 ) , 1 , ( ( ( norm ‘ 𝑅 ) ‘ 𝑥 ) · 𝑟 ) ) · ( ( ( norm ‘ 𝑅 ) ‘ 𝑥 ) / 2 ) ) = ( if ( 1 ≤ ( ( ( norm ‘ 𝑅 ) ‘ 𝑥 ) · 𝑟 ) , 1 , ( ( ( norm ‘ 𝑅 ) ‘ 𝑥 ) · 𝑟 ) ) · ( ( ( norm ‘ 𝑅 ) ‘ 𝑥 ) / 2 ) ) | |
| 61 | 1 2 3 52 33 53 57 58 59 60 | nrginvrcnlem | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 62 | 51 61 | pm2.61dane | ⊢ ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 63 | 16 18 | ovresd | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) = ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) ) |
| 64 | 63 | breq1d | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 ↔ ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 ) ) |
| 65 | simpl | ⊢ ( ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) → 𝑥 ∈ 𝑈 ) | |
| 66 | ffvelcdm | ⊢ ( ( 𝐼 : 𝑈 ⟶ 𝑈 ∧ 𝑥 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑈 ) | |
| 67 | 11 65 66 | syl2an | ⊢ ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑈 ) |
| 68 | 67 | adantr | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑈 ) |
| 69 | 68 31 | ovresd | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) = ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 70 | 69 | breq1d | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ↔ ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 71 | 64 70 | imbi12d | ⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ↔ ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) ) |
| 72 | 71 | ralbidva | ⊢ ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) → ( ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ↔ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) ) |
| 73 | 72 | rexbidv | ⊢ ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) → ( ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ↔ ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) ) |
| 74 | 62 73 | mpbird | ⊢ ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 75 | 74 | ralrimivva | ⊢ ( 𝑅 ∈ NrmRing → ∀ 𝑥 ∈ 𝑈 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 76 | xpss12 | ⊢ ( ( 𝑈 ⊆ 𝑋 ∧ 𝑈 ⊆ 𝑋 ) → ( 𝑈 × 𝑈 ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 77 | 15 15 76 | mp2an | ⊢ ( 𝑈 × 𝑈 ) ⊆ ( 𝑋 × 𝑋 ) |
| 78 | resabs1 | ⊢ ( ( 𝑈 × 𝑈 ) ⊆ ( 𝑋 × 𝑋 ) → ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑈 × 𝑈 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) | |
| 79 | 77 78 | ax-mp | ⊢ ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑈 × 𝑈 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) |
| 80 | eqid | ⊢ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) | |
| 81 | 1 80 | xmsxmet | ⊢ ( 𝑅 ∈ ∞MetSp → ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| 82 | 25 26 27 81 | 4syl | ⊢ ( 𝑅 ∈ NrmRing → ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| 83 | xmetres2 | ⊢ ( ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑈 × 𝑈 ) ) ∈ ( ∞Met ‘ 𝑈 ) ) | |
| 84 | 82 15 83 | sylancl | ⊢ ( 𝑅 ∈ NrmRing → ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑈 × 𝑈 ) ) ∈ ( ∞Met ‘ 𝑈 ) ) |
| 85 | 79 84 | eqeltrrid | ⊢ ( 𝑅 ∈ NrmRing → ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ∈ ( ∞Met ‘ 𝑈 ) ) |
| 86 | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) | |
| 87 | 86 86 | metcn | ⊢ ( ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ∈ ( ∞Met ‘ 𝑈 ) ∧ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ∈ ( ∞Met ‘ 𝑈 ) ) → ( 𝐼 ∈ ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) ↔ ( 𝐼 : 𝑈 ⟶ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) ) ) |
| 88 | 85 85 87 | syl2anc | ⊢ ( 𝑅 ∈ NrmRing → ( 𝐼 ∈ ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) ↔ ( 𝐼 : 𝑈 ⟶ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) ) ) |
| 89 | 11 75 88 | mpbir2and | ⊢ ( 𝑅 ∈ NrmRing → 𝐼 ∈ ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) ) |
| 90 | 4 1 80 | mstopn | ⊢ ( 𝑅 ∈ MetSp → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) |
| 91 | 25 26 90 | 3syl | ⊢ ( 𝑅 ∈ NrmRing → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) |
| 92 | 91 | oveq1d | ⊢ ( 𝑅 ∈ NrmRing → ( 𝐽 ↾t 𝑈 ) = ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) ↾t 𝑈 ) ) |
| 93 | 79 | eqcomi | ⊢ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) = ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑈 × 𝑈 ) ) |
| 94 | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) | |
| 95 | 93 94 86 | metrest | ⊢ ( ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) ↾t 𝑈 ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) |
| 96 | 82 15 95 | sylancl | ⊢ ( 𝑅 ∈ NrmRing → ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) ↾t 𝑈 ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) |
| 97 | 92 96 | eqtrd | ⊢ ( 𝑅 ∈ NrmRing → ( 𝐽 ↾t 𝑈 ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) |
| 98 | 97 97 | oveq12d | ⊢ ( 𝑅 ∈ NrmRing → ( ( 𝐽 ↾t 𝑈 ) Cn ( 𝐽 ↾t 𝑈 ) ) = ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) ) |
| 99 | 89 98 | eleqtrrd | ⊢ ( 𝑅 ∈ NrmRing → 𝐼 ∈ ( ( 𝐽 ↾t 𝑈 ) Cn ( 𝐽 ↾t 𝑈 ) ) ) |