This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate " R is a topological ring". (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istrg.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| istdrg.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| Assertion | istdrg | ⊢ ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrg.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 2 | istdrg.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | elin | ⊢ ( 𝑅 ∈ ( TopRing ∩ DivRing ) ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ) | |
| 4 | 3 | anbi1i | ⊢ ( ( 𝑅 ∈ ( TopRing ∩ DivRing ) ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ↔ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ) |
| 5 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = 𝑀 ) |
| 7 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = ( Unit ‘ 𝑅 ) ) | |
| 8 | 7 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = 𝑈 ) |
| 9 | 6 8 | oveq12d | ⊢ ( 𝑟 = 𝑅 → ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) = ( 𝑀 ↾s 𝑈 ) ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑟 = 𝑅 → ( ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ∈ TopGrp ↔ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ) |
| 11 | df-tdrg | ⊢ TopDRing = { 𝑟 ∈ ( TopRing ∩ DivRing ) ∣ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ∈ TopGrp } | |
| 12 | 10 11 | elrab2 | ⊢ ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ ( TopRing ∩ DivRing ) ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ) |
| 13 | df-3an | ⊢ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ↔ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ) | |
| 14 | 4 12 13 | 3bitr4i | ⊢ ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀 ↾s 𝑈 ) ∈ TopGrp ) ) |