This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitsubm.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unitsubm.2 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | ||
| Assertion | unitsubm | ⊢ ( 𝑅 ∈ Ring → 𝑈 ∈ ( SubMnd ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitsubm.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unitsubm.2 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 3 1 | unitss | ⊢ 𝑈 ⊆ ( Base ‘ 𝑅 ) |
| 5 | 4 | a1i | ⊢ ( 𝑅 ∈ Ring → 𝑈 ⊆ ( Base ‘ 𝑅 ) ) |
| 6 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 7 | 1 6 | 1unit | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
| 8 | 2 | oveq1i | ⊢ ( 𝑀 ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) |
| 9 | 1 8 | unitgrp | ⊢ ( 𝑅 ∈ Ring → ( 𝑀 ↾s 𝑈 ) ∈ Grp ) |
| 10 | 9 | grpmndd | ⊢ ( 𝑅 ∈ Ring → ( 𝑀 ↾s 𝑈 ) ∈ Mnd ) |
| 11 | 2 | ringmgp | ⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 12 | 2 3 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
| 13 | 2 6 | ringidval | ⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
| 14 | eqid | ⊢ ( 𝑀 ↾s 𝑈 ) = ( 𝑀 ↾s 𝑈 ) | |
| 15 | 12 13 14 | issubm2 | ⊢ ( 𝑀 ∈ Mnd → ( 𝑈 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑈 ∧ ( 𝑀 ↾s 𝑈 ) ∈ Mnd ) ) ) |
| 16 | 11 15 | syl | ⊢ ( 𝑅 ∈ Ring → ( 𝑈 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝑈 ∧ ( 𝑀 ↾s 𝑈 ) ∈ Mnd ) ) ) |
| 17 | 5 7 10 16 | mpbir3and | ⊢ ( 𝑅 ∈ Ring → 𝑈 ∈ ( SubMnd ‘ 𝑀 ) ) |