This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P. is an infinite set, the negation of Infinity implies that P. , and hence RR , is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq and nsmallnq ). (Contributed by Mario Carneiro, 11-May-2013) (Revised by Mario Carneiro, 16-Nov-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | npomex | ⊢ ( 𝐴 ∈ P → ω ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ P → 𝐴 ∈ V ) | |
| 2 | prnmax | ⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) | |
| 3 | 2 | ralrimiva | ⊢ ( 𝐴 ∈ P → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) |
| 4 | prpssnq | ⊢ ( 𝐴 ∈ P → 𝐴 ⊊ Q ) | |
| 5 | 4 | pssssd | ⊢ ( 𝐴 ∈ P → 𝐴 ⊆ Q ) |
| 6 | ltsonq | ⊢ <Q Or Q | |
| 7 | soss | ⊢ ( 𝐴 ⊆ Q → ( <Q Or Q → <Q Or 𝐴 ) ) | |
| 8 | 5 6 7 | mpisyl | ⊢ ( 𝐴 ∈ P → <Q Or 𝐴 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐴 ∈ Fin ) → <Q Or 𝐴 ) |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) | |
| 11 | prn0 | ⊢ ( 𝐴 ∈ P → 𝐴 ≠ ∅ ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐴 ∈ Fin ) → 𝐴 ≠ ∅ ) |
| 13 | fimax2g | ⊢ ( ( <Q Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ) | |
| 14 | 9 10 12 13 | syl3anc | ⊢ ( ( 𝐴 ∈ P ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ) |
| 15 | ralnex | ⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) | |
| 16 | 15 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) |
| 17 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) | |
| 18 | 16 17 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <Q 𝑦 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) |
| 19 | 14 18 | sylib | ⊢ ( ( 𝐴 ∈ P ∧ 𝐴 ∈ Fin ) → ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) |
| 20 | 19 | ex | ⊢ ( 𝐴 ∈ P → ( 𝐴 ∈ Fin → ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) |
| 21 | 3 20 | mt2d | ⊢ ( 𝐴 ∈ P → ¬ 𝐴 ∈ Fin ) |
| 22 | nelne1 | ⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin ) → V ≠ Fin ) | |
| 23 | 1 21 22 | syl2anc | ⊢ ( 𝐴 ∈ P → V ≠ Fin ) |
| 24 | 23 | necomd | ⊢ ( 𝐴 ∈ P → Fin ≠ V ) |
| 25 | fineqv | ⊢ ( ¬ ω ∈ V ↔ Fin = V ) | |
| 26 | 25 | necon1abii | ⊢ ( Fin ≠ V ↔ ω ∈ V ) |
| 27 | 24 26 | sylib | ⊢ ( 𝐴 ∈ P → ω ∈ V ) |