This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013) (Revised by Mario Carneiro, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fineqv | ⊢ ( ¬ ω ∈ V ↔ Fin = V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv | ⊢ Fin ⊆ V | |
| 2 | 1 | a1i | ⊢ ( ¬ ω ∈ V → Fin ⊆ V ) |
| 3 | vex | ⊢ 𝑎 ∈ V | |
| 4 | fineqvlem | ⊢ ( ( 𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin ) → ω ≼ 𝒫 𝒫 𝑎 ) | |
| 5 | 3 4 | mpan | ⊢ ( ¬ 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎 ) |
| 6 | reldom | ⊢ Rel ≼ | |
| 7 | 6 | brrelex1i | ⊢ ( ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V ) |
| 8 | 5 7 | syl | ⊢ ( ¬ 𝑎 ∈ Fin → ω ∈ V ) |
| 9 | 8 | con1i | ⊢ ( ¬ ω ∈ V → 𝑎 ∈ Fin ) |
| 10 | 9 | a1d | ⊢ ( ¬ ω ∈ V → ( 𝑎 ∈ V → 𝑎 ∈ Fin ) ) |
| 11 | 10 | ssrdv | ⊢ ( ¬ ω ∈ V → V ⊆ Fin ) |
| 12 | 2 11 | eqssd | ⊢ ( ¬ ω ∈ V → Fin = V ) |
| 13 | ominf | ⊢ ¬ ω ∈ Fin | |
| 14 | eleq2 | ⊢ ( Fin = V → ( ω ∈ Fin ↔ ω ∈ V ) ) | |
| 15 | 13 14 | mtbii | ⊢ ( Fin = V → ¬ ω ∈ V ) |
| 16 | 12 15 | impbii | ⊢ ( ¬ ω ∈ V ↔ Fin = V ) |