This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010) (Proof shortened by Mario Carneiro, 29-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimax2g | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo | ⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) | |
| 2 | cnvpo | ⊢ ( 𝑅 Po 𝐴 ↔ ◡ 𝑅 Po 𝐴 ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝑅 Or 𝐴 → ◡ 𝑅 Po 𝐴 ) |
| 4 | frfi | ⊢ ( ( ◡ 𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin ) → ◡ 𝑅 Fr 𝐴 ) | |
| 5 | 3 4 | sylan | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ◡ 𝑅 Fr 𝐴 ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ◡ 𝑅 Fr 𝐴 ) |
| 7 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 8 | fri | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ◡ 𝑅 Fr 𝐴 ) ∧ ( 𝐴 ⊆ 𝐴 ∧ 𝐴 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑥 ) | |
| 9 | 7 8 | mpanr1 | ⊢ ( ( ( 𝐴 ∈ Fin ∧ ◡ 𝑅 Fr 𝐴 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑥 ) |
| 10 | 9 | an32s | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ∧ ◡ 𝑅 Fr 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑥 ) |
| 11 | vex | ⊢ 𝑦 ∈ V | |
| 12 | vex | ⊢ 𝑥 ∈ V | |
| 13 | 11 12 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
| 14 | 13 | notbii | ⊢ ( ¬ 𝑦 ◡ 𝑅 𝑥 ↔ ¬ 𝑥 𝑅 𝑦 ) |
| 15 | 14 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) |
| 16 | 15 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑥 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) |
| 17 | 10 16 | sylib | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) ∧ ◡ 𝑅 Fr 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) |
| 18 | 17 | ex | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ◡ 𝑅 Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) ) |
| 19 | 18 | 3adant1 | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ◡ 𝑅 Fr 𝐴 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) ) |
| 20 | 6 19 | mpd | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) |