This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007) (Proof shortened by Wolf Lammen, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | necon1abii.1 | ⊢ ( ¬ 𝜑 ↔ 𝐴 = 𝐵 ) | |
| Assertion | necon1abii | ⊢ ( 𝐴 ≠ 𝐵 ↔ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon1abii.1 | ⊢ ( ¬ 𝜑 ↔ 𝐴 = 𝐵 ) | |
| 2 | notnotb | ⊢ ( 𝜑 ↔ ¬ ¬ 𝜑 ) | |
| 3 | 1 | necon3bbii | ⊢ ( ¬ ¬ 𝜑 ↔ 𝐴 ≠ 𝐵 ) |
| 4 | 2 3 | bitr2i | ⊢ ( 𝐴 ≠ 𝐵 ↔ 𝜑 ) |