This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P. is an infinite set, the negation of Infinity implies that P. , and hence RR , is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq and nsmallnq ). (Contributed by Mario Carneiro, 11-May-2013) (Revised by Mario Carneiro, 16-Nov-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | npomex | |- ( A e. P. -> _om e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. P. -> A e. _V ) |
|
| 2 | prnmax | |- ( ( A e. P. /\ x e. A ) -> E. y e. A x |
|
| 3 | 2 | ralrimiva | |- ( A e. P. -> A. x e. A E. y e. A x |
| 4 | prpssnq | |- ( A e. P. -> A C. Q. ) |
|
| 5 | 4 | pssssd | |- ( A e. P. -> A C_ Q. ) |
| 6 | ltsonq | |- |
|
| 7 | soss | |- ( A C_ Q. -> ( |
|
| 8 | 5 6 7 | mpisyl | |- ( A e. P. -> |
| 9 | 8 | adantr | |- ( ( A e. P. /\ A e. Fin ) -> |
| 10 | simpr | |- ( ( A e. P. /\ A e. Fin ) -> A e. Fin ) |
|
| 11 | prn0 | |- ( A e. P. -> A =/= (/) ) |
|
| 12 | 11 | adantr | |- ( ( A e. P. /\ A e. Fin ) -> A =/= (/) ) |
| 13 | fimax2g | |- ( (E. x e. A A. y e. A -. x |
|
| 14 | 9 10 12 13 | syl3anc | |- ( ( A e. P. /\ A e. Fin ) -> E. x e. A A. y e. A -. x |
| 15 | ralnex | |- ( A. y e. A -. x-. E. y e. A x |
|
| 16 | 15 | rexbii | |- ( E. x e. A A. y e. A -. xE. x e. A -. E. y e. A x |
| 17 | rexnal | |- ( E. x e. A -. E. y e. A x-. A. x e. A E. y e. A x |
|
| 18 | 16 17 | bitri | |- ( E. x e. A A. y e. A -. x-. A. x e. A E. y e. A x |
| 19 | 14 18 | sylib | |- ( ( A e. P. /\ A e. Fin ) -> -. A. x e. A E. y e. A x |
| 20 | 19 | ex | |- ( A e. P. -> ( A e. Fin -> -. A. x e. A E. y e. A x |
| 21 | 3 20 | mt2d | |- ( A e. P. -> -. A e. Fin ) |
| 22 | nelne1 | |- ( ( A e. _V /\ -. A e. Fin ) -> _V =/= Fin ) |
|
| 23 | 1 21 22 | syl2anc | |- ( A e. P. -> _V =/= Fin ) |
| 24 | 23 | necomd | |- ( A e. P. -> Fin =/= _V ) |
| 25 | fineqv | |- ( -. _om e. _V <-> Fin = _V ) |
|
| 26 | 25 | necon1abii | |- ( Fin =/= _V <-> _om e. _V ) |
| 27 | 24 26 | sylib | |- ( A e. P. -> _om e. _V ) |