This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmophm.1 | ⊢ 𝑇 ∈ BndLinOp | |
| Assertion | bdophmi | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) ∈ BndLinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmophm.1 | ⊢ 𝑇 ∈ BndLinOp | |
| 2 | bdopln | ⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp ) | |
| 3 | 1 2 | ax-mp | ⊢ 𝑇 ∈ LinOp |
| 4 | 3 | lnopmi | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) ∈ LinOp ) |
| 5 | 1 | nmophmi | ⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
| 6 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 7 | nmopre | ⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) | |
| 8 | 1 7 | ax-mp | ⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 9 | remulcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) | |
| 10 | 6 8 9 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
| 11 | 5 10 | eqeltrd | ⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
| 12 | elbdop2 | ⊢ ( ( 𝐴 ·op 𝑇 ) ∈ BndLinOp ↔ ( ( 𝐴 ·op 𝑇 ) ∈ LinOp ∧ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) ) | |
| 13 | 4 11 12 | sylanbrc | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) ∈ BndLinOp ) |