This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product of a Hilbert space operator is an operator. (Contributed by NM, 21-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | homulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) | |
| 2 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
| 4 | 3 | anassrs | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
| 5 | 4 | fmpttd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) : ℋ ⟶ ℋ ) |
| 6 | hommval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) | |
| 7 | 6 | feq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ↔ ( 𝑥 ∈ ℋ ↦ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) : ℋ ⟶ ℋ ) ) |
| 8 | 5 7 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |