This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for an operator norm. (Contributed by NM, 7-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopub | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℝ* ) → ( ( normop ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmopval | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℝ* ) → ( normop ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ) |
| 3 | 2 | breq1d | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℝ* ) → ( ( normop ‘ 𝑇 ) ≤ 𝐴 ↔ sup ( { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ) ) |
| 4 | nmopsetretALT | ⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ ) | |
| 5 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 6 | 4 5 | sstrdi | ⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ* ) |
| 7 | supxrleub | ⊢ ( ( { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ) ) | |
| 8 | 6 7 | sylan | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ) ) |
| 9 | ancom | ⊢ ( ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ( 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) | |
| 10 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) | |
| 11 | 10 | anbi1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ↔ ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) ) |
| 12 | 9 11 | bitrid | ⊢ ( 𝑦 = 𝑧 → ( ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) ) |
| 13 | 12 | rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ℋ ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) ) |
| 14 | 13 | ralab | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ ℋ ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ) |
| 15 | ralcom4 | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ( ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ ℋ ( ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ) | |
| 16 | impexp | ⊢ ( ( ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ↔ ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ) ) | |
| 17 | 16 | albii | ⊢ ( ∀ 𝑧 ( ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑧 ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ) ) |
| 18 | fvex | ⊢ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ V | |
| 19 | breq1 | ⊢ ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑧 ≤ 𝐴 ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) | |
| 20 | 19 | imbi2d | ⊢ ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( ( normℎ ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ↔ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| 21 | 18 20 | ceqsalv | ⊢ ( ∀ 𝑧 ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → 𝑧 ≤ 𝐴 ) ) ↔ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 22 | 17 21 | bitri | ⊢ ( ∀ 𝑧 ( ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ↔ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 23 | 22 | ralbii | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑧 ( ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 24 | r19.23v | ⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ↔ ( ∃ 𝑥 ∈ ℋ ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ) | |
| 25 | 24 | albii | ⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ ℋ ( ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ ℋ ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ) |
| 26 | 15 23 25 | 3bitr3i | ⊢ ( ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ ℋ ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → 𝑧 ≤ 𝐴 ) ) |
| 27 | 14 26 | bitr4i | ⊢ ( ∀ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑧 ≤ 𝐴 ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 28 | 8 27 | bitrdi | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℝ* ) → ( sup ( { 𝑦 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑦 = ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| 29 | 3 28 | bitrd | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℝ* ) → ( ( normop ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |