This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a Hilbert space operator is not minus infinity. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopgtmnf | ⊢ ( 𝑇 : ℋ ⟶ ℋ → -∞ < ( normop ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoprepnf | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ 𝑇 ) ≠ +∞ ) ) | |
| 2 | df-ne | ⊢ ( ( normop ‘ 𝑇 ) ≠ +∞ ↔ ¬ ( normop ‘ 𝑇 ) = +∞ ) | |
| 3 | 1 2 | bitrdi | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ¬ ( normop ‘ 𝑇 ) = +∞ ) ) |
| 4 | xor3 | ⊢ ( ¬ ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ 𝑇 ) = +∞ ) ↔ ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ¬ ( normop ‘ 𝑇 ) = +∞ ) ) | |
| 5 | nbior | ⊢ ( ¬ ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ 𝑇 ) = +∞ ) → ( ( normop ‘ 𝑇 ) ∈ ℝ ∨ ( normop ‘ 𝑇 ) = +∞ ) ) | |
| 6 | 4 5 | sylbir | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ¬ ( normop ‘ 𝑇 ) = +∞ ) → ( ( normop ‘ 𝑇 ) ∈ ℝ ∨ ( normop ‘ 𝑇 ) = +∞ ) ) |
| 7 | mnfltxr | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∨ ( normop ‘ 𝑇 ) = +∞ ) → -∞ < ( normop ‘ 𝑇 ) ) | |
| 8 | 3 6 7 | 3syl | ⊢ ( 𝑇 : ℋ ⟶ ℋ → -∞ < ( normop ‘ 𝑇 ) ) |