This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a bounded operator is a real number. (Contributed by NM, 29-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopre | ⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdopf | ⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 2 | nmopgtmnf | ⊢ ( 𝑇 : ℋ ⟶ ℋ → -∞ < ( normop ‘ 𝑇 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑇 ∈ BndLinOp → -∞ < ( normop ‘ 𝑇 ) ) |
| 4 | elbdop | ⊢ ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) < +∞ ) ) | |
| 5 | 4 | simprbi | ⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) < +∞ ) |
| 6 | nmopxr | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) ∈ ℝ* ) | |
| 7 | xrrebnd | ⊢ ( ( normop ‘ 𝑇 ) ∈ ℝ* → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( -∞ < ( normop ‘ 𝑇 ) ∧ ( normop ‘ 𝑇 ) < +∞ ) ) ) | |
| 8 | 1 6 7 | 3syl | ⊢ ( 𝑇 ∈ BndLinOp → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( -∞ < ( normop ‘ 𝑇 ) ∧ ( normop ‘ 𝑇 ) < +∞ ) ) ) |
| 9 | 3 5 8 | mpbir2and | ⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |