This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of the division algorithm. If an integer D greater than 1 divides N , then it does not divide any of N + 1 , N + 2 ... N + ( D - 1 ) . (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ndvdsadd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) ) → ( 𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ ( 𝑁 + 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) | |
| 2 | nnre | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℝ ) | |
| 3 | posdif | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝐾 < 𝐷 ↔ 0 < ( 𝐷 − 𝐾 ) ) ) | |
| 4 | 1 2 3 | syl2anr | ⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐾 < 𝐷 ↔ 0 < ( 𝐷 − 𝐾 ) ) ) |
| 5 | 4 | pm5.32i | ⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) ∧ 𝐾 < 𝐷 ) ↔ ( ( 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) ∧ 0 < ( 𝐷 − 𝐾 ) ) ) |
| 6 | nnz | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℤ ) | |
| 7 | nnz | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) | |
| 8 | zsubcl | ⊢ ( ( 𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝐷 − 𝐾 ) ∈ ℤ ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐷 − 𝐾 ) ∈ ℤ ) |
| 10 | elnnz | ⊢ ( ( 𝐷 − 𝐾 ) ∈ ℕ ↔ ( ( 𝐷 − 𝐾 ) ∈ ℤ ∧ 0 < ( 𝐷 − 𝐾 ) ) ) | |
| 11 | 10 | biimpri | ⊢ ( ( ( 𝐷 − 𝐾 ) ∈ ℤ ∧ 0 < ( 𝐷 − 𝐾 ) ) → ( 𝐷 − 𝐾 ) ∈ ℕ ) |
| 12 | 9 11 | sylan | ⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) ∧ 0 < ( 𝐷 − 𝐾 ) ) → ( 𝐷 − 𝐾 ) ∈ ℕ ) |
| 13 | 5 12 | sylbi | ⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) ∧ 𝐾 < 𝐷 ) → ( 𝐷 − 𝐾 ) ∈ ℕ ) |
| 14 | 13 | anasss | ⊢ ( ( 𝐷 ∈ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) ) → ( 𝐷 − 𝐾 ) ∈ ℕ ) |
| 15 | nngt0 | ⊢ ( 𝐾 ∈ ℕ → 0 < 𝐾 ) | |
| 16 | ltsubpos | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 0 < 𝐾 ↔ ( 𝐷 − 𝐾 ) < 𝐷 ) ) | |
| 17 | 1 2 16 | syl2an | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 0 < 𝐾 ↔ ( 𝐷 − 𝐾 ) < 𝐷 ) ) |
| 18 | 17 | biimpd | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ ) → ( 0 < 𝐾 → ( 𝐷 − 𝐾 ) < 𝐷 ) ) |
| 19 | 18 | expcom | ⊢ ( 𝐷 ∈ ℕ → ( 𝐾 ∈ ℕ → ( 0 < 𝐾 → ( 𝐷 − 𝐾 ) < 𝐷 ) ) ) |
| 20 | 15 19 | mpdi | ⊢ ( 𝐷 ∈ ℕ → ( 𝐾 ∈ ℕ → ( 𝐷 − 𝐾 ) < 𝐷 ) ) |
| 21 | 20 | imp | ⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐷 − 𝐾 ) < 𝐷 ) |
| 22 | 21 | adantrr | ⊢ ( ( 𝐷 ∈ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) ) → ( 𝐷 − 𝐾 ) < 𝐷 ) |
| 23 | 14 22 | jca | ⊢ ( ( 𝐷 ∈ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) ) → ( ( 𝐷 − 𝐾 ) ∈ ℕ ∧ ( 𝐷 − 𝐾 ) < 𝐷 ) ) |
| 24 | 23 | 3adant1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) ) → ( ( 𝐷 − 𝐾 ) ∈ ℕ ∧ ( 𝐷 − 𝐾 ) < 𝐷 ) ) |
| 25 | ndvdssub | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( ( 𝐷 − 𝐾 ) ∈ ℕ ∧ ( 𝐷 − 𝐾 ) < 𝐷 ) ) → ( 𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ ( 𝑁 − ( 𝐷 − 𝐾 ) ) ) ) | |
| 26 | 24 25 | syld3an3 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) ) → ( 𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ ( 𝑁 − ( 𝐷 − 𝐾 ) ) ) ) |
| 27 | zaddcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑁 + 𝐾 ) ∈ ℤ ) | |
| 28 | 7 27 | sylan2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → ( 𝑁 + 𝐾 ) ∈ ℤ ) |
| 29 | dvdssubr | ⊢ ( ( 𝐷 ∈ ℤ ∧ ( 𝑁 + 𝐾 ) ∈ ℤ ) → ( 𝐷 ∥ ( 𝑁 + 𝐾 ) ↔ 𝐷 ∥ ( ( 𝑁 + 𝐾 ) − 𝐷 ) ) ) | |
| 30 | 6 28 29 | syl2an | ⊢ ( ( 𝐷 ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ ) ) → ( 𝐷 ∥ ( 𝑁 + 𝐾 ) ↔ 𝐷 ∥ ( ( 𝑁 + 𝐾 ) − 𝐷 ) ) ) |
| 31 | 30 | an12s | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) ) → ( 𝐷 ∥ ( 𝑁 + 𝐾 ) ↔ 𝐷 ∥ ( ( 𝑁 + 𝐾 ) − 𝐷 ) ) ) |
| 32 | 31 | 3impb | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐷 ∥ ( 𝑁 + 𝐾 ) ↔ 𝐷 ∥ ( ( 𝑁 + 𝐾 ) − 𝐷 ) ) ) |
| 33 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 34 | nncn | ⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℂ ) | |
| 35 | nncn | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℂ ) | |
| 36 | subsub3 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( 𝑁 − ( 𝐷 − 𝐾 ) ) = ( ( 𝑁 + 𝐾 ) − 𝐷 ) ) | |
| 37 | 33 34 35 36 | syl3an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝑁 − ( 𝐷 − 𝐾 ) ) = ( ( 𝑁 + 𝐾 ) − 𝐷 ) ) |
| 38 | 37 | breq2d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐷 ∥ ( 𝑁 − ( 𝐷 − 𝐾 ) ) ↔ 𝐷 ∥ ( ( 𝑁 + 𝐾 ) − 𝐷 ) ) ) |
| 39 | 32 38 | bitr4d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( 𝐷 ∥ ( 𝑁 + 𝐾 ) ↔ 𝐷 ∥ ( 𝑁 − ( 𝐷 − 𝐾 ) ) ) ) |
| 40 | 39 | notbid | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ ) → ( ¬ 𝐷 ∥ ( 𝑁 + 𝐾 ) ↔ ¬ 𝐷 ∥ ( 𝑁 − ( 𝐷 − 𝐾 ) ) ) ) |
| 41 | 40 | 3adant3r | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) ) → ( ¬ 𝐷 ∥ ( 𝑁 + 𝐾 ) ↔ ¬ 𝐷 ∥ ( 𝑁 − ( 𝐷 − 𝐾 ) ) ) ) |
| 42 | 26 41 | sylibrd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) ) → ( 𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ ( 𝑁 + 𝐾 ) ) ) |