This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of ndvdsadd . If an integer D greater than 1 divides N , it does not divide N + 1 . (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ndvdsp1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 1 < 𝐷 ) → ( 𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ ( 𝑁 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn | ⊢ 1 ∈ ℕ | |
| 2 | 1 | jctl | ⊢ ( 1 < 𝐷 → ( 1 ∈ ℕ ∧ 1 < 𝐷 ) ) |
| 3 | ndvdsadd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 1 ∈ ℕ ∧ 1 < 𝐷 ) ) → ( 𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ ( 𝑁 + 1 ) ) ) | |
| 4 | 2 3 | syl3an3 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 1 < 𝐷 ) → ( 𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ ( 𝑁 + 1 ) ) ) |