This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of the division algorithm. If an integer D greater than 1 divides N , then it does not divide any of N - 1 , N - 2 ... N - ( D - 1 ) . (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ndvdssub | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) ) → ( 𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) | |
| 2 | nnne0 | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ≠ 0 ) | |
| 3 | 1 2 | jca | ⊢ ( 𝐾 ∈ ℕ → ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≠ 0 ) ) |
| 4 | df-ne | ⊢ ( 𝐾 ≠ 0 ↔ ¬ 𝐾 = 0 ) | |
| 5 | 4 | anbi2i | ⊢ ( ( 𝐾 < 𝐷 ∧ 𝐾 ≠ 0 ) ↔ ( 𝐾 < 𝐷 ∧ ¬ 𝐾 = 0 ) ) |
| 6 | divalg2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ∃! 𝑟 ∈ ℕ0 ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ) | |
| 7 | breq1 | ⊢ ( 𝑟 = 𝑥 → ( 𝑟 < 𝐷 ↔ 𝑥 < 𝐷 ) ) | |
| 8 | oveq2 | ⊢ ( 𝑟 = 𝑥 → ( 𝑁 − 𝑟 ) = ( 𝑁 − 𝑥 ) ) | |
| 9 | 8 | breq2d | ⊢ ( 𝑟 = 𝑥 → ( 𝐷 ∥ ( 𝑁 − 𝑟 ) ↔ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ) |
| 10 | 7 9 | anbi12d | ⊢ ( 𝑟 = 𝑥 → ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ↔ ( 𝑥 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ) ) |
| 11 | 10 | reu4 | ⊢ ( ∃! 𝑟 ∈ ℕ0 ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ↔ ( ∃ 𝑟 ∈ ℕ0 ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ∀ 𝑟 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 𝑥 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ) → 𝑟 = 𝑥 ) ) ) |
| 12 | 6 11 | sylib | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( ∃ 𝑟 ∈ ℕ0 ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ∀ 𝑟 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 𝑥 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ) → 𝑟 = 𝑥 ) ) ) |
| 13 | nngt0 | ⊢ ( 𝐷 ∈ ℕ → 0 < 𝐷 ) | |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∥ 𝑁 ) → 0 < 𝐷 ) |
| 15 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 16 | 15 | subid1d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 0 ) = 𝑁 ) |
| 17 | 16 | breq2d | ⊢ ( 𝑁 ∈ ℤ → ( 𝐷 ∥ ( 𝑁 − 0 ) ↔ 𝐷 ∥ 𝑁 ) ) |
| 18 | 17 | biimpar | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∥ 𝑁 ) → 𝐷 ∥ ( 𝑁 − 0 ) ) |
| 19 | 18 | 3adant2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∥ 𝑁 ) → 𝐷 ∥ ( 𝑁 − 0 ) ) |
| 20 | 14 19 | jca | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∥ 𝑁 ) → ( 0 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 0 ) ) ) |
| 21 | 20 | 3expa | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) ∧ 𝐷 ∥ 𝑁 ) → ( 0 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 0 ) ) ) |
| 22 | 21 | anim1ci | ⊢ ( ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) ∧ 𝐷 ∥ 𝑁 ) ∧ ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ) → ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 0 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 0 ) ) ) ) |
| 23 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 24 | breq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 < 𝐷 ↔ 0 < 𝐷 ) ) | |
| 25 | oveq2 | ⊢ ( 𝑥 = 0 → ( 𝑁 − 𝑥 ) = ( 𝑁 − 0 ) ) | |
| 26 | 25 | breq2d | ⊢ ( 𝑥 = 0 → ( 𝐷 ∥ ( 𝑁 − 𝑥 ) ↔ 𝐷 ∥ ( 𝑁 − 0 ) ) ) |
| 27 | 24 26 | anbi12d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ↔ ( 0 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 0 ) ) ) ) |
| 28 | 27 | anbi2d | ⊢ ( 𝑥 = 0 → ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 𝑥 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ) ↔ ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 0 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 0 ) ) ) ) ) |
| 29 | eqeq2 | ⊢ ( 𝑥 = 0 → ( 𝑟 = 𝑥 ↔ 𝑟 = 0 ) ) | |
| 30 | 28 29 | imbi12d | ⊢ ( 𝑥 = 0 → ( ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 𝑥 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ) → 𝑟 = 𝑥 ) ↔ ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 0 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 0 ) ) ) → 𝑟 = 0 ) ) ) |
| 31 | 30 | rspcv | ⊢ ( 0 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 𝑥 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ) → 𝑟 = 𝑥 ) → ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 0 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 0 ) ) ) → 𝑟 = 0 ) ) ) |
| 32 | 23 31 | ax-mp | ⊢ ( ∀ 𝑥 ∈ ℕ0 ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 𝑥 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ) → 𝑟 = 𝑥 ) → ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 0 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 0 ) ) ) → 𝑟 = 0 ) ) |
| 33 | 22 32 | syl5 | ⊢ ( ∀ 𝑥 ∈ ℕ0 ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 𝑥 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ) → 𝑟 = 𝑥 ) → ( ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) ∧ 𝐷 ∥ 𝑁 ) ∧ ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ) → 𝑟 = 0 ) ) |
| 34 | 33 | expd | ⊢ ( ∀ 𝑥 ∈ ℕ0 ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 𝑥 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ) → 𝑟 = 𝑥 ) → ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) ∧ 𝐷 ∥ 𝑁 ) → ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) → 𝑟 = 0 ) ) ) |
| 35 | 34 | ralimi | ⊢ ( ∀ 𝑟 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ∧ ( 𝑥 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑥 ) ) ) → 𝑟 = 𝑥 ) → ∀ 𝑟 ∈ ℕ0 ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) ∧ 𝐷 ∥ 𝑁 ) → ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) → 𝑟 = 0 ) ) ) |
| 36 | 12 35 | simpl2im | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ∀ 𝑟 ∈ ℕ0 ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) ∧ 𝐷 ∥ 𝑁 ) → ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) → 𝑟 = 0 ) ) ) |
| 37 | r19.21v | ⊢ ( ∀ 𝑟 ∈ ℕ0 ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) ∧ 𝐷 ∥ 𝑁 ) → ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) → 𝑟 = 0 ) ) ↔ ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) ∧ 𝐷 ∥ 𝑁 ) → ∀ 𝑟 ∈ ℕ0 ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) → 𝑟 = 0 ) ) ) | |
| 38 | 36 37 | sylib | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) ∧ 𝐷 ∥ 𝑁 ) → ∀ 𝑟 ∈ ℕ0 ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) → 𝑟 = 0 ) ) ) |
| 39 | 38 | expd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( 𝐷 ∥ 𝑁 → ∀ 𝑟 ∈ ℕ0 ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) → 𝑟 = 0 ) ) ) ) |
| 40 | 39 | pm2.43i | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( 𝐷 ∥ 𝑁 → ∀ 𝑟 ∈ ℕ0 ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) → 𝑟 = 0 ) ) ) |
| 41 | 40 | 3impia | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∥ 𝑁 ) → ∀ 𝑟 ∈ ℕ0 ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) → 𝑟 = 0 ) ) |
| 42 | breq1 | ⊢ ( 𝑟 = 𝐾 → ( 𝑟 < 𝐷 ↔ 𝐾 < 𝐷 ) ) | |
| 43 | oveq2 | ⊢ ( 𝑟 = 𝐾 → ( 𝑁 − 𝑟 ) = ( 𝑁 − 𝐾 ) ) | |
| 44 | 43 | breq2d | ⊢ ( 𝑟 = 𝐾 → ( 𝐷 ∥ ( 𝑁 − 𝑟 ) ↔ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) |
| 45 | 42 44 | anbi12d | ⊢ ( 𝑟 = 𝐾 → ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) ↔ ( 𝐾 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) ) |
| 46 | eqeq1 | ⊢ ( 𝑟 = 𝐾 → ( 𝑟 = 0 ↔ 𝐾 = 0 ) ) | |
| 47 | 45 46 | imbi12d | ⊢ ( 𝑟 = 𝐾 → ( ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) → 𝑟 = 0 ) ↔ ( ( 𝐾 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) → 𝐾 = 0 ) ) ) |
| 48 | 47 | rspcv | ⊢ ( 𝐾 ∈ ℕ0 → ( ∀ 𝑟 ∈ ℕ0 ( ( 𝑟 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝑟 ) ) → 𝑟 = 0 ) → ( ( 𝐾 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) → 𝐾 = 0 ) ) ) |
| 49 | 41 48 | syl5com | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∥ 𝑁 ) → ( 𝐾 ∈ ℕ0 → ( ( 𝐾 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) → 𝐾 = 0 ) ) ) |
| 50 | pm4.14 | ⊢ ( ( ( 𝐾 < 𝐷 ∧ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) → 𝐾 = 0 ) ↔ ( ( 𝐾 < 𝐷 ∧ ¬ 𝐾 = 0 ) → ¬ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) | |
| 51 | 49 50 | imbitrdi | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∥ 𝑁 ) → ( 𝐾 ∈ ℕ0 → ( ( 𝐾 < 𝐷 ∧ ¬ 𝐾 = 0 ) → ¬ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) ) |
| 52 | 5 51 | syl7bi | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∥ 𝑁 ) → ( 𝐾 ∈ ℕ0 → ( ( 𝐾 < 𝐷 ∧ 𝐾 ≠ 0 ) → ¬ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) ) |
| 53 | 52 | exp4a | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∥ 𝑁 ) → ( 𝐾 ∈ ℕ0 → ( 𝐾 < 𝐷 → ( 𝐾 ≠ 0 → ¬ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) ) ) |
| 54 | 53 | com23 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∥ 𝑁 ) → ( 𝐾 < 𝐷 → ( 𝐾 ∈ ℕ0 → ( 𝐾 ≠ 0 → ¬ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) ) ) |
| 55 | 54 | imp4a | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∥ 𝑁 ) → ( 𝐾 < 𝐷 → ( ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≠ 0 ) → ¬ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) ) |
| 56 | 3 55 | syl7 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∥ 𝑁 ) → ( 𝐾 < 𝐷 → ( 𝐾 ∈ ℕ → ¬ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) ) |
| 57 | 56 | impcomd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷 ∥ 𝑁 ) → ( ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) → ¬ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) |
| 58 | 57 | 3expia | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( 𝐷 ∥ 𝑁 → ( ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) → ¬ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) ) |
| 59 | 58 | com23 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ) → ( ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) → ( 𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) ) |
| 60 | 59 | 3impia | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝐷 ) ) → ( 𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ ( 𝑁 − 𝐾 ) ) ) |