This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of the division algorithm. If an integer D greater than 1 divides N , then it does not divide any of N + 1 , N + 2 ... N + ( D - 1 ) . (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ndvdsadd | |- ( ( N e. ZZ /\ D e. NN /\ ( K e. NN /\ K < D ) ) -> ( D || N -> -. D || ( N + K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | |- ( K e. NN -> K e. RR ) |
|
| 2 | nnre | |- ( D e. NN -> D e. RR ) |
|
| 3 | posdif | |- ( ( K e. RR /\ D e. RR ) -> ( K < D <-> 0 < ( D - K ) ) ) |
|
| 4 | 1 2 3 | syl2anr | |- ( ( D e. NN /\ K e. NN ) -> ( K < D <-> 0 < ( D - K ) ) ) |
| 5 | 4 | pm5.32i | |- ( ( ( D e. NN /\ K e. NN ) /\ K < D ) <-> ( ( D e. NN /\ K e. NN ) /\ 0 < ( D - K ) ) ) |
| 6 | nnz | |- ( D e. NN -> D e. ZZ ) |
|
| 7 | nnz | |- ( K e. NN -> K e. ZZ ) |
|
| 8 | zsubcl | |- ( ( D e. ZZ /\ K e. ZZ ) -> ( D - K ) e. ZZ ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( D e. NN /\ K e. NN ) -> ( D - K ) e. ZZ ) |
| 10 | elnnz | |- ( ( D - K ) e. NN <-> ( ( D - K ) e. ZZ /\ 0 < ( D - K ) ) ) |
|
| 11 | 10 | biimpri | |- ( ( ( D - K ) e. ZZ /\ 0 < ( D - K ) ) -> ( D - K ) e. NN ) |
| 12 | 9 11 | sylan | |- ( ( ( D e. NN /\ K e. NN ) /\ 0 < ( D - K ) ) -> ( D - K ) e. NN ) |
| 13 | 5 12 | sylbi | |- ( ( ( D e. NN /\ K e. NN ) /\ K < D ) -> ( D - K ) e. NN ) |
| 14 | 13 | anasss | |- ( ( D e. NN /\ ( K e. NN /\ K < D ) ) -> ( D - K ) e. NN ) |
| 15 | nngt0 | |- ( K e. NN -> 0 < K ) |
|
| 16 | ltsubpos | |- ( ( K e. RR /\ D e. RR ) -> ( 0 < K <-> ( D - K ) < D ) ) |
|
| 17 | 1 2 16 | syl2an | |- ( ( K e. NN /\ D e. NN ) -> ( 0 < K <-> ( D - K ) < D ) ) |
| 18 | 17 | biimpd | |- ( ( K e. NN /\ D e. NN ) -> ( 0 < K -> ( D - K ) < D ) ) |
| 19 | 18 | expcom | |- ( D e. NN -> ( K e. NN -> ( 0 < K -> ( D - K ) < D ) ) ) |
| 20 | 15 19 | mpdi | |- ( D e. NN -> ( K e. NN -> ( D - K ) < D ) ) |
| 21 | 20 | imp | |- ( ( D e. NN /\ K e. NN ) -> ( D - K ) < D ) |
| 22 | 21 | adantrr | |- ( ( D e. NN /\ ( K e. NN /\ K < D ) ) -> ( D - K ) < D ) |
| 23 | 14 22 | jca | |- ( ( D e. NN /\ ( K e. NN /\ K < D ) ) -> ( ( D - K ) e. NN /\ ( D - K ) < D ) ) |
| 24 | 23 | 3adant1 | |- ( ( N e. ZZ /\ D e. NN /\ ( K e. NN /\ K < D ) ) -> ( ( D - K ) e. NN /\ ( D - K ) < D ) ) |
| 25 | ndvdssub | |- ( ( N e. ZZ /\ D e. NN /\ ( ( D - K ) e. NN /\ ( D - K ) < D ) ) -> ( D || N -> -. D || ( N - ( D - K ) ) ) ) |
|
| 26 | 24 25 | syld3an3 | |- ( ( N e. ZZ /\ D e. NN /\ ( K e. NN /\ K < D ) ) -> ( D || N -> -. D || ( N - ( D - K ) ) ) ) |
| 27 | zaddcl | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N + K ) e. ZZ ) |
|
| 28 | 7 27 | sylan2 | |- ( ( N e. ZZ /\ K e. NN ) -> ( N + K ) e. ZZ ) |
| 29 | dvdssubr | |- ( ( D e. ZZ /\ ( N + K ) e. ZZ ) -> ( D || ( N + K ) <-> D || ( ( N + K ) - D ) ) ) |
|
| 30 | 6 28 29 | syl2an | |- ( ( D e. NN /\ ( N e. ZZ /\ K e. NN ) ) -> ( D || ( N + K ) <-> D || ( ( N + K ) - D ) ) ) |
| 31 | 30 | an12s | |- ( ( N e. ZZ /\ ( D e. NN /\ K e. NN ) ) -> ( D || ( N + K ) <-> D || ( ( N + K ) - D ) ) ) |
| 32 | 31 | 3impb | |- ( ( N e. ZZ /\ D e. NN /\ K e. NN ) -> ( D || ( N + K ) <-> D || ( ( N + K ) - D ) ) ) |
| 33 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 34 | nncn | |- ( D e. NN -> D e. CC ) |
|
| 35 | nncn | |- ( K e. NN -> K e. CC ) |
|
| 36 | subsub3 | |- ( ( N e. CC /\ D e. CC /\ K e. CC ) -> ( N - ( D - K ) ) = ( ( N + K ) - D ) ) |
|
| 37 | 33 34 35 36 | syl3an | |- ( ( N e. ZZ /\ D e. NN /\ K e. NN ) -> ( N - ( D - K ) ) = ( ( N + K ) - D ) ) |
| 38 | 37 | breq2d | |- ( ( N e. ZZ /\ D e. NN /\ K e. NN ) -> ( D || ( N - ( D - K ) ) <-> D || ( ( N + K ) - D ) ) ) |
| 39 | 32 38 | bitr4d | |- ( ( N e. ZZ /\ D e. NN /\ K e. NN ) -> ( D || ( N + K ) <-> D || ( N - ( D - K ) ) ) ) |
| 40 | 39 | notbid | |- ( ( N e. ZZ /\ D e. NN /\ K e. NN ) -> ( -. D || ( N + K ) <-> -. D || ( N - ( D - K ) ) ) ) |
| 41 | 40 | 3adant3r | |- ( ( N e. ZZ /\ D e. NN /\ ( K e. NN /\ K < D ) ) -> ( -. D || ( N + K ) <-> -. D || ( N - ( D - K ) ) ) ) |
| 42 | 26 41 | sylibrd | |- ( ( N e. ZZ /\ D e. NN /\ ( K e. NN /\ K < D ) ) -> ( D || N -> -. D || ( N + K ) ) ) |