This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006) (Proof shortened by Wolf Lammen, 25-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ad4ant3.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| Assertion | 3adant3r | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ ( 𝜒 ∧ 𝜏 ) ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant3.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 2 | simpl | ⊢ ( ( 𝜒 ∧ 𝜏 ) → 𝜒 ) | |
| 3 | 2 1 | syl3an3 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ ( 𝜒 ∧ 𝜏 ) ) → 𝜃 ) |