This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two positive integers are not coprime, the larger of them is not a prime number. (Contributed by AV, 9-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ncoprmlnprm | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → ( 1 < ( 𝐴 gcd 𝐵 ) → 𝐵 ∉ ℙ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ncoprmgcdgt1b | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ↔ 1 < ( 𝐴 gcd 𝐵 ) ) ) | |
| 2 | 1 | bicomd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 1 < ( 𝐴 gcd 𝐵 ) ↔ ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → ( 1 < ( 𝐴 gcd 𝐵 ) ↔ ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ) |
| 4 | simp1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℕ ) | |
| 5 | eluzelz | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → 𝑖 ∈ ℤ ) | |
| 6 | 4 5 | anim12ci | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ ) ) |
| 7 | dvdsle | ⊢ ( ( 𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( 𝑖 ∥ 𝐴 → 𝑖 ≤ 𝐴 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ∥ 𝐴 → 𝑖 ≤ 𝐴 ) ) |
| 9 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 10 | nnre | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) | |
| 11 | eluzelre | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → 𝑖 ∈ ℝ ) | |
| 12 | 9 10 11 | 3anim123i | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ ) ) |
| 13 | 3anrot | ⊢ ( ( 𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ↔ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ ) ) | |
| 14 | 12 13 | sylibr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 15 | lelttr | ⊢ ( ( 𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝑖 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → 𝑖 < 𝐵 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑖 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) → 𝑖 < 𝐵 ) ) |
| 17 | 16 | expcomd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 < 𝐵 → ( 𝑖 ≤ 𝐴 → 𝑖 < 𝐵 ) ) ) |
| 18 | 17 | 3exp | ⊢ ( 𝐴 ∈ ℕ → ( 𝐵 ∈ ℕ → ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 < 𝐵 → ( 𝑖 ≤ 𝐴 → 𝑖 < 𝐵 ) ) ) ) ) |
| 19 | 18 | com34 | ⊢ ( 𝐴 ∈ ℕ → ( 𝐵 ∈ ℕ → ( 𝐴 < 𝐵 → ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑖 ≤ 𝐴 → 𝑖 < 𝐵 ) ) ) ) ) |
| 20 | 19 | 3imp1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ≤ 𝐴 → 𝑖 < 𝐵 ) ) |
| 21 | 20 | imp | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑖 ≤ 𝐴 ) → 𝑖 < 𝐵 ) |
| 22 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℤ ) |
| 24 | 23 5 | anim12ci | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑖 ≤ 𝐴 ) → ( 𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 26 | zltlem1 | ⊢ ( ( 𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑖 < 𝐵 ↔ 𝑖 ≤ ( 𝐵 − 1 ) ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑖 ≤ 𝐴 ) → ( 𝑖 < 𝐵 ↔ 𝑖 ≤ ( 𝐵 − 1 ) ) ) |
| 28 | 21 27 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ 𝑖 ≤ 𝐴 ) → 𝑖 ≤ ( 𝐵 − 1 ) ) |
| 29 | 28 | ex | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ≤ 𝐴 → 𝑖 ≤ ( 𝐵 − 1 ) ) ) |
| 30 | 8 29 | syldc | ⊢ ( 𝑖 ∥ 𝐴 → ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑖 ≤ ( 𝐵 − 1 ) ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑖 ≤ ( 𝐵 − 1 ) ) ) |
| 32 | 31 | impcom | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝑖 ≤ ( 𝐵 − 1 ) ) |
| 33 | peano2zm | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 − 1 ) ∈ ℤ ) | |
| 34 | 22 33 | syl | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 − 1 ) ∈ ℤ ) |
| 35 | 34 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 1 ) ∈ ℤ ) |
| 36 | 35 | anim1ci | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐵 − 1 ) ∈ ℤ ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐵 − 1 ) ∈ ℤ ) ) |
| 38 | elfz5 | ⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝐵 − 1 ) ∈ ℤ ) → ( 𝑖 ∈ ( 2 ... ( 𝐵 − 1 ) ) ↔ 𝑖 ≤ ( 𝐵 − 1 ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( 𝑖 ∈ ( 2 ... ( 𝐵 − 1 ) ) ↔ 𝑖 ≤ ( 𝐵 − 1 ) ) ) |
| 40 | 32 39 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝑖 ∈ ( 2 ... ( 𝐵 − 1 ) ) ) |
| 41 | breq1 | ⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∥ 𝐵 ↔ 𝑖 ∥ 𝐵 ) ) | |
| 42 | 41 | adantl | ⊢ ( ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) ∧ 𝑗 = 𝑖 ) → ( 𝑗 ∥ 𝐵 ↔ 𝑖 ∥ 𝐵 ) ) |
| 43 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝑖 ∥ 𝐵 ) | |
| 44 | 40 42 43 | rspcedvd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ∃ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) 𝑗 ∥ 𝐵 ) |
| 45 | rexnal | ⊢ ( ∃ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ ¬ 𝑗 ∥ 𝐵 ↔ ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) | |
| 46 | notnotb | ⊢ ( 𝑗 ∥ 𝐵 ↔ ¬ ¬ 𝑗 ∥ 𝐵 ) | |
| 47 | 46 | bicomi | ⊢ ( ¬ ¬ 𝑗 ∥ 𝐵 ↔ 𝑗 ∥ 𝐵 ) |
| 48 | 47 | rexbii | ⊢ ( ∃ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ ¬ 𝑗 ∥ 𝐵 ↔ ∃ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) 𝑗 ∥ 𝐵 ) |
| 49 | 45 48 | bitr3i | ⊢ ( ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ↔ ∃ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) 𝑗 ∥ 𝐵 ) |
| 50 | 44 49 | sylibr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) |
| 51 | 50 | olcd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → ( ¬ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∨ ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) ) |
| 52 | df-nel | ⊢ ( 𝐵 ∉ ℙ ↔ ¬ 𝐵 ∈ ℙ ) | |
| 53 | ianor | ⊢ ( ¬ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) ↔ ( ¬ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∨ ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) ) | |
| 54 | isprm3 | ⊢ ( 𝐵 ∈ ℙ ↔ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) ) | |
| 55 | 53 54 | xchnxbir | ⊢ ( ¬ 𝐵 ∈ ℙ ↔ ( ¬ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∨ ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) ) |
| 56 | 52 55 | bitri | ⊢ ( 𝐵 ∉ ℙ ↔ ( ¬ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∨ ¬ ∀ 𝑗 ∈ ( 2 ... ( 𝐵 − 1 ) ) ¬ 𝑗 ∥ 𝐵 ) ) |
| 57 | 51 56 | sylibr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) ) → 𝐵 ∉ ℙ ) |
| 58 | 57 | rexlimdva2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → ( ∃ 𝑖 ∈ ( ℤ≥ ‘ 2 ) ( 𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵 ) → 𝐵 ∉ ℙ ) ) |
| 59 | 3 58 | sylbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵 ) → ( 1 < ( 𝐴 gcd 𝐵 ) → 𝐵 ∉ ℙ ) ) |