This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncongrprm | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑃 ) = ( ( 𝐵 · 𝐶 ) mod 𝑃 ) ↔ ( 𝐴 mod 𝑃 ) = ( 𝐵 mod 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 2 | 1 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) ) → 𝑃 ∈ ℕ ) |
| 3 | coprm | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝐶 ↔ ( 𝑃 gcd 𝐶 ) = 1 ) ) | |
| 4 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 5 | gcdcom | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝑃 gcd 𝐶 ) = ( 𝐶 gcd 𝑃 ) ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ ) → ( 𝑃 gcd 𝐶 ) = ( 𝐶 gcd 𝑃 ) ) |
| 7 | 6 | eqeq1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ ) → ( ( 𝑃 gcd 𝐶 ) = 1 ↔ ( 𝐶 gcd 𝑃 ) = 1 ) ) |
| 8 | 3 7 | bitrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝐶 ↔ ( 𝐶 gcd 𝑃 ) = 1 ) ) |
| 9 | 8 | ancoms | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( ¬ 𝑃 ∥ 𝐶 ↔ ( 𝐶 gcd 𝑃 ) = 1 ) ) |
| 10 | 9 | biimpd | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑃 ∈ ℙ ) → ( ¬ 𝑃 ∥ 𝐶 → ( 𝐶 gcd 𝑃 ) = 1 ) ) |
| 11 | 10 | expimpd | ⊢ ( 𝐶 ∈ ℤ → ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) → ( 𝐶 gcd 𝑃 ) = 1 ) ) |
| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) → ( 𝐶 gcd 𝑃 ) = 1 ) ) |
| 13 | 12 | imp | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) ) → ( 𝐶 gcd 𝑃 ) = 1 ) |
| 14 | 2 13 | jca | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) ) → ( 𝑃 ∈ ℕ ∧ ( 𝐶 gcd 𝑃 ) = 1 ) ) |
| 15 | cncongrcoprm | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑃 ∈ ℕ ∧ ( 𝐶 gcd 𝑃 ) = 1 ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑃 ) = ( ( 𝐵 · 𝐶 ) mod 𝑃 ) ↔ ( 𝐴 mod 𝑃 ) = ( 𝐵 mod 𝑃 ) ) ) | |
| 16 | 14 15 | syldan | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶 ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑃 ) = ( ( 𝐵 · 𝐶 ) mod 𝑃 ) ↔ ( 𝐴 mod 𝑃 ) = ( 𝐵 mod 𝑃 ) ) ) |