This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two positive integers are not coprime, the larger of them is not a prime number. (Contributed by AV, 9-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ncoprmlnprm | |- ( ( A e. NN /\ B e. NN /\ A < B ) -> ( 1 < ( A gcd B ) -> B e/ Prime ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ncoprmgcdgt1b | |- ( ( A e. NN /\ B e. NN ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) <-> 1 < ( A gcd B ) ) ) |
|
| 2 | 1 | bicomd | |- ( ( A e. NN /\ B e. NN ) -> ( 1 < ( A gcd B ) <-> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) ) ) |
| 3 | 2 | 3adant3 | |- ( ( A e. NN /\ B e. NN /\ A < B ) -> ( 1 < ( A gcd B ) <-> E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) ) ) |
| 4 | simp1 | |- ( ( A e. NN /\ B e. NN /\ A < B ) -> A e. NN ) |
|
| 5 | eluzelz | |- ( i e. ( ZZ>= ` 2 ) -> i e. ZZ ) |
|
| 6 | 4 5 | anim12ci | |- ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) -> ( i e. ZZ /\ A e. NN ) ) |
| 7 | dvdsle | |- ( ( i e. ZZ /\ A e. NN ) -> ( i || A -> i <_ A ) ) |
|
| 8 | 6 7 | syl | |- ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) -> ( i || A -> i <_ A ) ) |
| 9 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 10 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 11 | eluzelre | |- ( i e. ( ZZ>= ` 2 ) -> i e. RR ) |
|
| 12 | 9 10 11 | 3anim123i | |- ( ( A e. NN /\ B e. NN /\ i e. ( ZZ>= ` 2 ) ) -> ( A e. RR /\ B e. RR /\ i e. RR ) ) |
| 13 | 3anrot | |- ( ( i e. RR /\ A e. RR /\ B e. RR ) <-> ( A e. RR /\ B e. RR /\ i e. RR ) ) |
|
| 14 | 12 13 | sylibr | |- ( ( A e. NN /\ B e. NN /\ i e. ( ZZ>= ` 2 ) ) -> ( i e. RR /\ A e. RR /\ B e. RR ) ) |
| 15 | lelttr | |- ( ( i e. RR /\ A e. RR /\ B e. RR ) -> ( ( i <_ A /\ A < B ) -> i < B ) ) |
|
| 16 | 14 15 | syl | |- ( ( A e. NN /\ B e. NN /\ i e. ( ZZ>= ` 2 ) ) -> ( ( i <_ A /\ A < B ) -> i < B ) ) |
| 17 | 16 | expcomd | |- ( ( A e. NN /\ B e. NN /\ i e. ( ZZ>= ` 2 ) ) -> ( A < B -> ( i <_ A -> i < B ) ) ) |
| 18 | 17 | 3exp | |- ( A e. NN -> ( B e. NN -> ( i e. ( ZZ>= ` 2 ) -> ( A < B -> ( i <_ A -> i < B ) ) ) ) ) |
| 19 | 18 | com34 | |- ( A e. NN -> ( B e. NN -> ( A < B -> ( i e. ( ZZ>= ` 2 ) -> ( i <_ A -> i < B ) ) ) ) ) |
| 20 | 19 | 3imp1 | |- ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) -> ( i <_ A -> i < B ) ) |
| 21 | 20 | imp | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ i <_ A ) -> i < B ) |
| 22 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 23 | 22 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ A < B ) -> B e. ZZ ) |
| 24 | 23 5 | anim12ci | |- ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) -> ( i e. ZZ /\ B e. ZZ ) ) |
| 25 | 24 | adantr | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ i <_ A ) -> ( i e. ZZ /\ B e. ZZ ) ) |
| 26 | zltlem1 | |- ( ( i e. ZZ /\ B e. ZZ ) -> ( i < B <-> i <_ ( B - 1 ) ) ) |
|
| 27 | 25 26 | syl | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ i <_ A ) -> ( i < B <-> i <_ ( B - 1 ) ) ) |
| 28 | 21 27 | mpbid | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ i <_ A ) -> i <_ ( B - 1 ) ) |
| 29 | 28 | ex | |- ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) -> ( i <_ A -> i <_ ( B - 1 ) ) ) |
| 30 | 8 29 | syldc | |- ( i || A -> ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) -> i <_ ( B - 1 ) ) ) |
| 31 | 30 | adantr | |- ( ( i || A /\ i || B ) -> ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) -> i <_ ( B - 1 ) ) ) |
| 32 | 31 | impcom | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ ( i || A /\ i || B ) ) -> i <_ ( B - 1 ) ) |
| 33 | peano2zm | |- ( B e. ZZ -> ( B - 1 ) e. ZZ ) |
|
| 34 | 22 33 | syl | |- ( B e. NN -> ( B - 1 ) e. ZZ ) |
| 35 | 34 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ A < B ) -> ( B - 1 ) e. ZZ ) |
| 36 | 35 | anim1ci | |- ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) -> ( i e. ( ZZ>= ` 2 ) /\ ( B - 1 ) e. ZZ ) ) |
| 37 | 36 | adantr | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ ( i || A /\ i || B ) ) -> ( i e. ( ZZ>= ` 2 ) /\ ( B - 1 ) e. ZZ ) ) |
| 38 | elfz5 | |- ( ( i e. ( ZZ>= ` 2 ) /\ ( B - 1 ) e. ZZ ) -> ( i e. ( 2 ... ( B - 1 ) ) <-> i <_ ( B - 1 ) ) ) |
|
| 39 | 37 38 | syl | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ ( i || A /\ i || B ) ) -> ( i e. ( 2 ... ( B - 1 ) ) <-> i <_ ( B - 1 ) ) ) |
| 40 | 32 39 | mpbird | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ ( i || A /\ i || B ) ) -> i e. ( 2 ... ( B - 1 ) ) ) |
| 41 | breq1 | |- ( j = i -> ( j || B <-> i || B ) ) |
|
| 42 | 41 | adantl | |- ( ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ ( i || A /\ i || B ) ) /\ j = i ) -> ( j || B <-> i || B ) ) |
| 43 | simprr | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ ( i || A /\ i || B ) ) -> i || B ) |
|
| 44 | 40 42 43 | rspcedvd | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ ( i || A /\ i || B ) ) -> E. j e. ( 2 ... ( B - 1 ) ) j || B ) |
| 45 | rexnal | |- ( E. j e. ( 2 ... ( B - 1 ) ) -. -. j || B <-> -. A. j e. ( 2 ... ( B - 1 ) ) -. j || B ) |
|
| 46 | notnotb | |- ( j || B <-> -. -. j || B ) |
|
| 47 | 46 | bicomi | |- ( -. -. j || B <-> j || B ) |
| 48 | 47 | rexbii | |- ( E. j e. ( 2 ... ( B - 1 ) ) -. -. j || B <-> E. j e. ( 2 ... ( B - 1 ) ) j || B ) |
| 49 | 45 48 | bitr3i | |- ( -. A. j e. ( 2 ... ( B - 1 ) ) -. j || B <-> E. j e. ( 2 ... ( B - 1 ) ) j || B ) |
| 50 | 44 49 | sylibr | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ ( i || A /\ i || B ) ) -> -. A. j e. ( 2 ... ( B - 1 ) ) -. j || B ) |
| 51 | 50 | olcd | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ ( i || A /\ i || B ) ) -> ( -. B e. ( ZZ>= ` 2 ) \/ -. A. j e. ( 2 ... ( B - 1 ) ) -. j || B ) ) |
| 52 | df-nel | |- ( B e/ Prime <-> -. B e. Prime ) |
|
| 53 | ianor | |- ( -. ( B e. ( ZZ>= ` 2 ) /\ A. j e. ( 2 ... ( B - 1 ) ) -. j || B ) <-> ( -. B e. ( ZZ>= ` 2 ) \/ -. A. j e. ( 2 ... ( B - 1 ) ) -. j || B ) ) |
|
| 54 | isprm3 | |- ( B e. Prime <-> ( B e. ( ZZ>= ` 2 ) /\ A. j e. ( 2 ... ( B - 1 ) ) -. j || B ) ) |
|
| 55 | 53 54 | xchnxbir | |- ( -. B e. Prime <-> ( -. B e. ( ZZ>= ` 2 ) \/ -. A. j e. ( 2 ... ( B - 1 ) ) -. j || B ) ) |
| 56 | 52 55 | bitri | |- ( B e/ Prime <-> ( -. B e. ( ZZ>= ` 2 ) \/ -. A. j e. ( 2 ... ( B - 1 ) ) -. j || B ) ) |
| 57 | 51 56 | sylibr | |- ( ( ( ( A e. NN /\ B e. NN /\ A < B ) /\ i e. ( ZZ>= ` 2 ) ) /\ ( i || A /\ i || B ) ) -> B e/ Prime ) |
| 58 | 57 | rexlimdva2 | |- ( ( A e. NN /\ B e. NN /\ A < B ) -> ( E. i e. ( ZZ>= ` 2 ) ( i || A /\ i || B ) -> B e/ Prime ) ) |
| 59 | 3 58 | sylbid | |- ( ( A e. NN /\ B e. NN /\ A < B ) -> ( 1 < ( A gcd B ) -> B e/ Prime ) ) |