This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmbdd.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulmbdd.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ulmbdd.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | ||
| ulmbdd.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ) | ||
| ulmbdd.u | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | ||
| Assertion | ulmbdd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmbdd.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulmbdd.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | ulmbdd.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 4 | ulmbdd.b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ) | |
| 5 | ulmbdd.u | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | |
| 6 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) | |
| 7 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 8 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 10 | 1 2 3 6 7 5 9 | ulmi | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) |
| 11 | 1 | r19.2uz | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) |
| 12 | r19.26 | ⊢ ( ∀ 𝑧 ∈ 𝑆 ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ↔ ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) | |
| 13 | peano2re | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 + 1 ) ∈ ℝ ) |
| 15 | ulmcl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 16 | 5 15 | syl | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
| 17 | 16 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → 𝐺 : 𝑆 ⟶ ℂ ) |
| 18 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → 𝑧 ∈ 𝑆 ) | |
| 19 | 17 18 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 20 | 19 | abscld | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℝ ) |
| 21 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 22 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → 𝑘 ∈ 𝑍 ) | |
| 23 | 21 22 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 24 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) | |
| 25 | 23 24 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 26 | 25 18 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 27 | 26 | abscld | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ ℝ ) |
| 28 | 19 26 | subcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ ℂ ) |
| 29 | 28 | abscld | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) ∈ ℝ ) |
| 30 | 27 29 | readdcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) + ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) ) ∈ ℝ ) |
| 31 | 14 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( 𝑥 + 1 ) ∈ ℝ ) |
| 32 | 26 19 | pncan3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) + ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) = ( 𝐺 ‘ 𝑧 ) ) |
| 33 | 32 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) + ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) ) = ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
| 34 | 26 28 | abstrid | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) + ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) ) ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) + ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) ) ) |
| 35 | 33 34 | eqbrtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) + ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) ) ) |
| 36 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → 𝑥 ∈ ℝ ) | |
| 37 | 1re | ⊢ 1 ∈ ℝ | |
| 38 | 37 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → 1 ∈ ℝ ) |
| 39 | simprrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ) | |
| 40 | 19 26 | abssubd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 41 | simprrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) | |
| 42 | 40 41 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) < 1 ) |
| 43 | ltle | ⊢ ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) < 1 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) ≤ 1 ) ) | |
| 44 | 29 37 43 | sylancl | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) < 1 → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) ≤ 1 ) ) |
| 45 | 42 44 | mpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) ≤ 1 ) |
| 46 | 27 29 36 38 39 45 | le2addd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) + ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) ) ≤ ( 𝑥 + 1 ) ) |
| 47 | 20 30 31 35 46 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑧 ∈ 𝑆 ∧ ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) ) ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 + 1 ) ) |
| 48 | 47 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 + 1 ) ) ) |
| 49 | 48 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝑆 ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 + 1 ) ) ) |
| 50 | brralrspcev | ⊢ ( ( ( 𝑥 + 1 ) ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 + 1 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑦 ) | |
| 51 | 14 49 50 | syl6an | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝑆 ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
| 52 | 12 51 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) → ( ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
| 53 | 52 | expd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑦 ) ) ) |
| 54 | 53 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑥 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑦 ) ) ) |
| 55 | 4 54 | mpd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑦 ) ) |
| 56 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑦 ↔ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑥 ) ) | |
| 57 | 56 | ralbidv | ⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑦 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑥 ) ) |
| 58 | 57 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 59 | 55 58 | imbitrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑥 ) ) |
| 60 | 59 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑥 ) ) |
| 61 | 11 60 | syl5 | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 1 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑥 ) ) |
| 62 | 10 61 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑥 ) |