This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim .) (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfulm.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| mbfulm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| mbfulm.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ MblFn ) | ||
| mbfulm.u | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | ||
| Assertion | mbfulm | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfulm.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | mbfulm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | mbfulm.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ MblFn ) | |
| 4 | mbfulm.u | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | |
| 5 | ulmcl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
| 7 | 6 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 8 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑀 ∈ ℤ ) |
| 9 | 3 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
| 10 | ulmf2 | ⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 11 | 9 4 10 | syl2anc | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) | |
| 14 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 15 | 14 | mptex | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ V |
| 16 | 15 | a1i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ V ) |
| 17 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 18 | 17 | fveq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) |
| 19 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) | |
| 20 | fvex | ⊢ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ∈ V | |
| 21 | 18 19 20 | fvmpt | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) |
| 22 | 21 | eqcomd | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
| 23 | 22 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) |
| 24 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
| 25 | 1 8 12 13 16 23 24 | ulmclm | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑘 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ⇝ ( 𝐺 ‘ 𝑧 ) ) |
| 26 | 11 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 27 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 29 | 28 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑧 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 30 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ MblFn ) |
| 31 | 29 30 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑧 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ MblFn ) |
| 32 | 28 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 33 | 32 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 34 | 1 2 25 31 33 | mbflim | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ MblFn ) |
| 35 | 7 34 | eqeltrd | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |