This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute function operation through a sequence. Maps-to notation version of seqof . (Contributed by Mario Carneiro, 7-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqof2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| seqof2.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqof2.3 | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ 𝐵 ) | ||
| seqof2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑋 ∈ 𝑊 ) | ||
| Assertion | seqof2 | ⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ) ‘ 𝑁 ) = ( 𝑧 ∈ 𝐴 ↦ ( seq 𝑀 ( + , ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqof2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | seqof2.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 3 | seqof2.3 | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ 𝐵 ) | |
| 4 | seqof2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑋 ∈ 𝑊 ) | |
| 5 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 6 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 8 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) | |
| 9 | 7 8 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) |
| 10 | 6 9 | nfeq | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) |
| 11 | 5 10 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) ) |
| 12 | eleq1w | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 13 | 12 | anbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
| 14 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) ) | |
| 15 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) | |
| 16 | 15 | mpteq2dv | ⊢ ( 𝑥 = 𝑛 → ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑥 = 𝑛 → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) ) ) |
| 18 | 13 17 | imbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) ) ) ) |
| 19 | 3 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ 𝐵 ) |
| 20 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ 𝑉 ) |
| 21 | 20 | mptexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ∈ V ) |
| 22 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) | |
| 23 | 22 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ∈ V ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) |
| 24 | 19 21 23 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) |
| 25 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 26 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝜑 ) | |
| 27 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) | |
| 28 | 26 25 27 4 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑋 ∈ 𝑊 ) |
| 29 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) = ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) | |
| 30 | 29 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
| 31 | 25 28 30 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
| 32 | 31 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) ) = ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) |
| 33 | 24 32 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) ) ) |
| 34 | 11 18 33 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) ) |
| 35 | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) | |
| 36 | nfcsb1v | ⊢ Ⅎ 𝑧 ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) | |
| 37 | nfcv | ⊢ Ⅎ 𝑧 𝑛 | |
| 38 | 36 37 | nffv | ⊢ Ⅎ 𝑧 ( ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) |
| 39 | csbeq1a | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) = ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) | |
| 40 | 39 | fveq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) = ( ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) |
| 41 | 35 38 40 | cbvmpt | ⊢ ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) |
| 42 | 34 41 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑦 ∈ 𝐴 ↦ ( ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) ) |
| 43 | 1 2 42 | seqof | ⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ) ‘ 𝑁 ) = ( 𝑦 ∈ 𝐴 ↦ ( seq 𝑀 ( + , ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) ) ) |
| 44 | nfcv | ⊢ Ⅎ 𝑦 ( seq 𝑀 ( + , ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) | |
| 45 | nfcv | ⊢ Ⅎ 𝑧 𝑀 | |
| 46 | nfcv | ⊢ Ⅎ 𝑧 + | |
| 47 | 45 46 36 | nfseq | ⊢ Ⅎ 𝑧 seq 𝑀 ( + , ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) |
| 48 | nfcv | ⊢ Ⅎ 𝑧 𝑁 | |
| 49 | 47 48 | nffv | ⊢ Ⅎ 𝑧 ( seq 𝑀 ( + , ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) |
| 50 | 39 | seqeq3d | ⊢ ( 𝑧 = 𝑦 → seq 𝑀 ( + , ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) = seq 𝑀 ( + , ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ) |
| 51 | 50 | fveq1d | ⊢ ( 𝑧 = 𝑦 → ( seq 𝑀 ( + , ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) ) |
| 52 | 44 49 51 | cbvmpt | ⊢ ( 𝑧 ∈ 𝐴 ↦ ( seq 𝑀 ( + , ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( seq 𝑀 ( + , ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) ) |
| 53 | 43 52 | eqtr4di | ⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ) ‘ 𝑁 ) = ( 𝑧 ∈ 𝐴 ↦ ( seq 𝑀 ( + , ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) ) ) |