This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A converging sequence of complex numbers is bounded. (Contributed by Mario Carneiro, 9-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | climcau.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | climbdd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcau.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | simp3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 3 | 1 | climcau | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑦 ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑦 ) |
| 5 | 1 | caubnd | ⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) |
| 7 | r19.26 | ⊢ ( ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ↔ ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) | |
| 8 | simpr | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 9 | 8 | abscld | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 10 | simpllr | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → 𝑥 ∈ ℝ ) | |
| 11 | ltle | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) | |
| 12 | 9 10 11 | syl2anc | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
| 13 | 12 | expimpd | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
| 14 | 13 | ralimdva | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑘 ∈ 𝑍 ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
| 15 | 7 14 | biimtrrid | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
| 16 | 15 | exp4b | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ( 𝑥 ∈ ℝ → ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) ) ) |
| 17 | 16 | com23 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( 𝑥 ∈ ℝ → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) ) ) |
| 18 | 17 | 3impia | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( 𝑥 ∈ ℝ → ( ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) ) |
| 19 | 18 | reximdvai | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) < 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) ) |
| 20 | 6 19 | mpd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑥 ) |