This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A neighborhood of -oo contains an unbounded interval based at a real number. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mnfnei | ⊢ ( ( 𝐴 ∈ ( ordTop ‘ ≤ ) ∧ -∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) | |
| 2 | eqid | ⊢ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) | |
| 3 | eqid | ⊢ ran (,) = ran (,) | |
| 4 | 1 2 3 | leordtval | ⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) |
| 5 | 4 | eleq2i | ⊢ ( 𝐴 ∈ ( ordTop ‘ ≤ ) ↔ 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ) |
| 6 | tg2 | ⊢ ( ( 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ∧ -∞ ∈ 𝐴 ) → ∃ 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ) | |
| 7 | elun | ⊢ ( 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ↔ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∨ 𝑢 ∈ ran (,) ) ) | |
| 8 | elun | ⊢ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ↔ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∨ 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) | |
| 9 | eqid | ⊢ ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) | |
| 10 | 9 | elrnmpt | ⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) ) ) |
| 11 | 10 | elv | ⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) ) |
| 12 | nltmnf | ⊢ ( 𝑦 ∈ ℝ* → ¬ 𝑦 < -∞ ) | |
| 13 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 14 | elioc1 | ⊢ ( ( 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ ∈ ( 𝑦 (,] +∞ ) ↔ ( -∞ ∈ ℝ* ∧ 𝑦 < -∞ ∧ -∞ ≤ +∞ ) ) ) | |
| 15 | 13 14 | mpan2 | ⊢ ( 𝑦 ∈ ℝ* → ( -∞ ∈ ( 𝑦 (,] +∞ ) ↔ ( -∞ ∈ ℝ* ∧ 𝑦 < -∞ ∧ -∞ ≤ +∞ ) ) ) |
| 16 | simp2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 < -∞ ∧ -∞ ≤ +∞ ) → 𝑦 < -∞ ) | |
| 17 | 15 16 | biimtrdi | ⊢ ( 𝑦 ∈ ℝ* → ( -∞ ∈ ( 𝑦 (,] +∞ ) → 𝑦 < -∞ ) ) |
| 18 | 12 17 | mtod | ⊢ ( 𝑦 ∈ ℝ* → ¬ -∞ ∈ ( 𝑦 (,] +∞ ) ) |
| 19 | eleq2 | ⊢ ( 𝑢 = ( 𝑦 (,] +∞ ) → ( -∞ ∈ 𝑢 ↔ -∞ ∈ ( 𝑦 (,] +∞ ) ) ) | |
| 20 | 19 | notbid | ⊢ ( 𝑢 = ( 𝑦 (,] +∞ ) → ( ¬ -∞ ∈ 𝑢 ↔ ¬ -∞ ∈ ( 𝑦 (,] +∞ ) ) ) |
| 21 | 18 20 | syl5ibrcom | ⊢ ( 𝑦 ∈ ℝ* → ( 𝑢 = ( 𝑦 (,] +∞ ) → ¬ -∞ ∈ 𝑢 ) ) |
| 22 | 21 | rexlimiv | ⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) → ¬ -∞ ∈ 𝑢 ) |
| 23 | 22 | pm2.21d | ⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) → ( -∞ ∈ 𝑢 → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
| 24 | 23 | adantrd | ⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
| 25 | 11 24 | sylbi | ⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
| 26 | eqid | ⊢ ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) | |
| 27 | 26 | elrnmpt | ⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) ) ) |
| 28 | 27 | elv | ⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) ) |
| 29 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 30 | 29 | a1i | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → -∞ ∈ ℝ* ) |
| 31 | 0xr | ⊢ 0 ∈ ℝ* | |
| 32 | simprl | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → 𝑦 ∈ ℝ* ) | |
| 33 | ifcl | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ* ) | |
| 34 | 31 32 33 | sylancr | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ* ) |
| 35 | 13 | a1i | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → +∞ ∈ ℝ* ) |
| 36 | mnflt0 | ⊢ -∞ < 0 | |
| 37 | simpll | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → -∞ ∈ 𝑢 ) | |
| 38 | simprr | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → 𝑢 = ( -∞ [,) 𝑦 ) ) | |
| 39 | 37 38 | eleqtrd | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → -∞ ∈ ( -∞ [,) 𝑦 ) ) |
| 40 | elico1 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( -∞ ∈ ( -∞ [,) 𝑦 ) ↔ ( -∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦 ) ) ) | |
| 41 | 29 32 40 | sylancr | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → ( -∞ ∈ ( -∞ [,) 𝑦 ) ↔ ( -∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦 ) ) ) |
| 42 | 39 41 | mpbid | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → ( -∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦 ) ) |
| 43 | 42 | simp3d | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → -∞ < 𝑦 ) |
| 44 | breq2 | ⊢ ( 0 = if ( 0 ≤ 𝑦 , 0 , 𝑦 ) → ( -∞ < 0 ↔ -∞ < if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ) | |
| 45 | breq2 | ⊢ ( 𝑦 = if ( 0 ≤ 𝑦 , 0 , 𝑦 ) → ( -∞ < 𝑦 ↔ -∞ < if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ) | |
| 46 | 44 45 | ifboth | ⊢ ( ( -∞ < 0 ∧ -∞ < 𝑦 ) → -∞ < if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) |
| 47 | 36 43 46 | sylancr | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → -∞ < if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) |
| 48 | 31 | a1i | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → 0 ∈ ℝ* ) |
| 49 | xrmin1 | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ≤ 0 ) | |
| 50 | 31 32 49 | sylancr | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ≤ 0 ) |
| 51 | 0re | ⊢ 0 ∈ ℝ | |
| 52 | ltpnf | ⊢ ( 0 ∈ ℝ → 0 < +∞ ) | |
| 53 | 51 52 | mp1i | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → 0 < +∞ ) |
| 54 | 34 48 35 50 53 | xrlelttrd | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) < +∞ ) |
| 55 | xrre2 | ⊢ ( ( ( -∞ ∈ ℝ* ∧ if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∧ if ( 0 ≤ 𝑦 , 0 , 𝑦 ) < +∞ ) ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ ) | |
| 56 | 30 34 35 47 54 55 | syl32anc | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ ) |
| 57 | xrmin2 | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ≤ 𝑦 ) | |
| 58 | 31 32 57 | sylancr | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ≤ 𝑦 ) |
| 59 | df-ico | ⊢ [,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 ≤ 𝑐 ∧ 𝑐 < 𝑏 ) } ) | |
| 60 | xrltletr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑥 < if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∧ if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ≤ 𝑦 ) → 𝑥 < 𝑦 ) ) | |
| 61 | 59 59 60 | ixxss2 | ⊢ ( ( 𝑦 ∈ ℝ* ∧ if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ≤ 𝑦 ) → ( -∞ [,) if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ⊆ ( -∞ [,) 𝑦 ) ) |
| 62 | 32 58 61 | syl2anc | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → ( -∞ [,) if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ⊆ ( -∞ [,) 𝑦 ) ) |
| 63 | simplr | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → 𝑢 ⊆ 𝐴 ) | |
| 64 | 38 63 | eqsstrrd | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → ( -∞ [,) 𝑦 ) ⊆ 𝐴 ) |
| 65 | 62 64 | sstrd | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → ( -∞ [,) if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ⊆ 𝐴 ) |
| 66 | oveq2 | ⊢ ( 𝑥 = if ( 0 ≤ 𝑦 , 0 , 𝑦 ) → ( -∞ [,) 𝑥 ) = ( -∞ [,) if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ) | |
| 67 | 66 | sseq1d | ⊢ ( 𝑥 = if ( 0 ≤ 𝑦 , 0 , 𝑦 ) → ( ( -∞ [,) 𝑥 ) ⊆ 𝐴 ↔ ( -∞ [,) if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ⊆ 𝐴 ) ) |
| 68 | 67 | rspcev | ⊢ ( ( if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ ∧ ( -∞ [,) if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) |
| 69 | 56 65 68 | syl2anc | ⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) |
| 70 | 69 | rexlimdvaa | ⊢ ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
| 71 | 70 | com12 | ⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
| 72 | 28 71 | sylbi | ⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
| 73 | 25 72 | jaoi | ⊢ ( ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∨ 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
| 74 | 8 73 | sylbi | ⊢ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
| 75 | mnfnre | ⊢ -∞ ∉ ℝ | |
| 76 | 75 | neli | ⊢ ¬ -∞ ∈ ℝ |
| 77 | elssuni | ⊢ ( 𝑢 ∈ ran (,) → 𝑢 ⊆ ∪ ran (,) ) | |
| 78 | unirnioo | ⊢ ℝ = ∪ ran (,) | |
| 79 | 77 78 | sseqtrrdi | ⊢ ( 𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ ) |
| 80 | 79 | sseld | ⊢ ( 𝑢 ∈ ran (,) → ( -∞ ∈ 𝑢 → -∞ ∈ ℝ ) ) |
| 81 | 76 80 | mtoi | ⊢ ( 𝑢 ∈ ran (,) → ¬ -∞ ∈ 𝑢 ) |
| 82 | 81 | pm2.21d | ⊢ ( 𝑢 ∈ ran (,) → ( -∞ ∈ 𝑢 → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
| 83 | 82 | adantrd | ⊢ ( 𝑢 ∈ ran (,) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
| 84 | 74 83 | jaoi | ⊢ ( ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∨ 𝑢 ∈ ran (,) ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
| 85 | 7 84 | sylbi | ⊢ ( 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
| 86 | 85 | rexlimiv | ⊢ ( ∃ 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) |
| 87 | 6 86 | syl | ⊢ ( ( 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ∧ -∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) |
| 88 | 5 87 | sylanb | ⊢ ( ( 𝐴 ∈ ( ordTop ‘ ≤ ) ∧ -∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) |