This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrmin1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | ⊢ ( 𝐴 ≤ 𝐵 → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) = 𝐴 ) |
| 3 | xrleid | ⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴 ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐴 ) |
| 5 | 2 4 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) ≤ 𝐴 ) |
| 6 | iffalse | ⊢ ( ¬ 𝐴 ≤ 𝐵 → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) = 𝐵 ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) = 𝐵 ) |
| 8 | xrletri | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴 ) ) | |
| 9 | 8 | orcanai | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → 𝐵 ≤ 𝐴 ) |
| 10 | 7 9 | eqbrtrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 ≤ 𝐵 ) → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) ≤ 𝐴 ) |
| 11 | 5 10 | pm2.61dan | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → if ( 𝐴 ≤ 𝐵 , 𝐴 , 𝐵 ) ≤ 𝐴 ) |