This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function for 0-dimensional matrices on a given ring is the function mapping the empty set to the unity element of that ring. (Contributed by AV, 28-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mdet0pr | ⊢ ( 𝑅 ∈ Ring → ( ∅ maDet 𝑅 ) = { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( ∅ maDet 𝑅 ) = ( ∅ maDet 𝑅 ) | |
| 2 | eqid | ⊢ ( ∅ Mat 𝑅 ) = ( ∅ Mat 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ ( ∅ Mat 𝑅 ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ ( SymGrp ‘ ∅ ) ) = ( Base ‘ ( SymGrp ‘ ∅ ) ) | |
| 5 | eqid | ⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( pmSgn ‘ ∅ ) = ( pmSgn ‘ ∅ ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 9 | 1 2 3 4 5 6 7 8 | mdetfval | ⊢ ( ∅ maDet 𝑅 ) = ( 𝑚 ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |
| 10 | 9 | a1i | ⊢ ( 𝑅 ∈ Ring → ( ∅ maDet 𝑅 ) = ( 𝑚 ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| 11 | mat0dimbas0 | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) | |
| 12 | 11 | mpteq1d | ⊢ ( 𝑅 ∈ Ring → ( 𝑚 ∈ ( Base ‘ ( ∅ Mat 𝑅 ) ) ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = ( 𝑚 ∈ { ∅ } ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| 13 | 0ex | ⊢ ∅ ∈ V | |
| 14 | 13 | a1i | ⊢ ( 𝑅 ∈ Ring → ∅ ∈ V ) |
| 15 | ovex | ⊢ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) ∈ V | |
| 16 | oveq | ⊢ ( 𝑚 = ∅ → ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) = ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) | |
| 17 | 16 | mpteq2dv | ⊢ ( 𝑚 = ∅ → ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) = ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) |
| 18 | 17 | oveq2d | ⊢ ( 𝑚 = ∅ → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝑚 = ∅ → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) |
| 20 | 19 | mpteq2dv | ⊢ ( 𝑚 = ∅ → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) = ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( 𝑚 = ∅ → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) ) |
| 22 | 21 | fmptsng | ⊢ ( ( ∅ ∈ V ∧ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) ∈ V ) → { 〈 ∅ , ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) 〉 } = ( 𝑚 ∈ { ∅ } ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| 23 | 14 15 22 | sylancl | ⊢ ( 𝑅 ∈ Ring → { 〈 ∅ , ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) 〉 } = ( 𝑚 ∈ { ∅ } ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| 24 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) = ∅ | |
| 25 | 24 | a1i | ⊢ ( 𝑅 ∈ Ring → ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) = ∅ ) |
| 26 | 25 | oveq2d | ⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ∅ ) ) |
| 27 | eqid | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 28 | 27 | gsum0 | ⊢ ( ( mulGrp ‘ 𝑅 ) Σg ∅ ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 29 | 26 28 | eqtrdi | ⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 30 | 29 | oveq2d | ⊢ ( 𝑅 ∈ Ring → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ) |
| 31 | 30 | mpteq2dv | ⊢ ( 𝑅 ∈ Ring → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) = ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ) ) |
| 32 | 31 | oveq2d | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ) ) ) |
| 33 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 34 | 8 33 | ringidval | ⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 35 | 34 | eqcomi | ⊢ ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) |
| 36 | 35 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 37 | 36 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 38 | 0fi | ⊢ ∅ ∈ Fin | |
| 39 | 4 6 5 | zrhcopsgnelbas | ⊢ ( ( 𝑅 ∈ Ring ∧ ∅ ∈ Fin ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ∈ ( Base ‘ 𝑅 ) ) |
| 40 | 38 39 | mp3an2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ∈ ( Base ‘ 𝑅 ) ) |
| 41 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 42 | 41 7 33 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) |
| 43 | 40 42 | syldan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) |
| 44 | 37 43 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) |
| 45 | 44 | mpteq2dva | ⊢ ( 𝑅 ∈ Ring → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ) = ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) ) |
| 46 | 45 | oveq2d | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) ) ) |
| 47 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → 𝑅 ∈ Ring ) | |
| 48 | 38 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ∅ ∈ Fin ) |
| 49 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) | |
| 50 | elsni | ⊢ ( 𝑝 ∈ { ∅ } → 𝑝 = ∅ ) | |
| 51 | fveq2 | ⊢ ( 𝑝 = ∅ → ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = ( ( pmSgn ‘ ∅ ) ‘ ∅ ) ) | |
| 52 | psgn0fv0 | ⊢ ( ( pmSgn ‘ ∅ ) ‘ ∅ ) = 1 | |
| 53 | 51 52 | eqtrdi | ⊢ ( 𝑝 = ∅ → ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = 1 ) |
| 54 | 50 53 | syl | ⊢ ( 𝑝 ∈ { ∅ } → ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = 1 ) |
| 55 | symgbas0 | ⊢ ( Base ‘ ( SymGrp ‘ ∅ ) ) = { ∅ } | |
| 56 | 54 55 | eleq2s | ⊢ ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) → ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = 1 ) |
| 57 | 56 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = 1 ) |
| 58 | eqid | ⊢ ( SymGrp ‘ ∅ ) = ( SymGrp ‘ ∅ ) | |
| 59 | 58 4 6 | psgnevpmb | ⊢ ( ∅ ∈ Fin → ( 𝑝 ∈ ( pmEven ‘ ∅ ) ↔ ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ∧ ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = 1 ) ) ) |
| 60 | 48 59 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( 𝑝 ∈ ( pmEven ‘ ∅ ) ↔ ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ∧ ( ( pmSgn ‘ ∅ ) ‘ 𝑝 ) = 1 ) ) ) |
| 61 | 49 57 60 | mpbir2and | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → 𝑝 ∈ ( pmEven ‘ ∅ ) ) |
| 62 | 5 6 33 | zrhpsgnevpm | ⊢ ( ( 𝑅 ∈ Ring ∧ ∅ ∈ Fin ∧ 𝑝 ∈ ( pmEven ‘ ∅ ) ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) = ( 1r ‘ 𝑅 ) ) |
| 63 | 47 48 61 62 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) = ( 1r ‘ 𝑅 ) ) |
| 64 | 63 | mpteq2dva | ⊢ ( 𝑅 ∈ Ring → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) = ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( 1r ‘ 𝑅 ) ) ) |
| 65 | 64 | oveq2d | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( 1r ‘ 𝑅 ) ) ) ) |
| 66 | 55 | a1i | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( SymGrp ‘ ∅ ) ) = { ∅ } ) |
| 67 | 66 | mpteq1d | ⊢ ( 𝑅 ∈ Ring → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( 1r ‘ 𝑅 ) ) = ( 𝑝 ∈ { ∅ } ↦ ( 1r ‘ 𝑅 ) ) ) |
| 68 | 67 | oveq2d | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( 1r ‘ 𝑅 ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ { ∅ } ↦ ( 1r ‘ 𝑅 ) ) ) ) |
| 69 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 70 | 41 33 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 71 | eqidd | ⊢ ( 𝑝 = ∅ → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) ) | |
| 72 | 41 71 | gsumsn | ⊢ ( ( 𝑅 ∈ Mnd ∧ ∅ ∈ V ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 Σg ( 𝑝 ∈ { ∅ } ↦ ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 73 | 69 14 70 72 | syl3anc | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ { ∅ } ↦ ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 74 | 65 68 73 | 3eqtrd | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 75 | 32 46 74 | 3eqtrd | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 76 | 75 | opeq2d | ⊢ ( 𝑅 ∈ Ring → 〈 ∅ , ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) 〉 = 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 ) |
| 77 | 76 | sneqd | ⊢ ( 𝑅 ∈ Ring → { 〈 ∅ , ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) ∅ 𝑥 ) ) ) ) ) ) 〉 } = { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ) |
| 78 | 23 77 | eqtr3d | ⊢ ( 𝑅 ∈ Ring → ( 𝑚 ∈ { ∅ } ↦ ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ ∅ ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ ∅ ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ ∅ ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ) |
| 79 | 10 12 78 | 3eqtrd | ⊢ ( 𝑅 ∈ Ring → ( ∅ maDet 𝑅 ) = { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ) |