This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: First substitution for the determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetfval.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdetfval.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| mdetfval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mdetfval.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | ||
| mdetfval.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | ||
| mdetfval.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| mdetfval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mdetfval.u | ⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) | ||
| Assertion | mdetfval | ⊢ 𝐷 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetfval.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdetfval.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 3 | mdetfval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | mdetfval.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 5 | mdetfval.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
| 6 | mdetfval.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 7 | mdetfval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 8 | mdetfval.u | ⊢ 𝑈 = ( mulGrp ‘ 𝑅 ) | |
| 9 | oveq12 | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = ( 𝑁 Mat 𝑅 ) ) | |
| 10 | 9 2 | eqtr4di | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑛 Mat 𝑟 ) = 𝐴 ) |
| 11 | 10 | fveq2d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = ( Base ‘ 𝐴 ) ) |
| 12 | 11 3 | eqtr4di | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( 𝑛 Mat 𝑟 ) ) = 𝐵 ) |
| 13 | simpr | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) | |
| 14 | simpl | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 𝑛 = 𝑁 ) | |
| 15 | 14 | fveq2d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( SymGrp ‘ 𝑛 ) = ( SymGrp ‘ 𝑁 ) ) |
| 16 | 15 | fveq2d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( SymGrp ‘ 𝑛 ) ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) |
| 17 | 16 4 | eqtr4di | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( Base ‘ ( SymGrp ‘ 𝑛 ) ) = 𝑃 ) |
| 18 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
| 20 | 19 7 | eqtr4di | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( .r ‘ 𝑟 ) = · ) |
| 21 | 13 | fveq2d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ℤRHom ‘ 𝑟 ) = ( ℤRHom ‘ 𝑅 ) ) |
| 22 | 21 5 | eqtr4di | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ℤRHom ‘ 𝑟 ) = 𝑌 ) |
| 23 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( pmSgn ‘ 𝑛 ) = ( pmSgn ‘ 𝑁 ) ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( pmSgn ‘ 𝑛 ) = ( pmSgn ‘ 𝑁 ) ) |
| 25 | 24 6 | eqtr4di | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( pmSgn ‘ 𝑛 ) = 𝑆 ) |
| 26 | 22 25 | coeq12d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) = ( 𝑌 ∘ 𝑆 ) ) |
| 27 | 26 | fveq1d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) = ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) ) |
| 28 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) | |
| 29 | 28 | adantl | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( mulGrp ‘ 𝑟 ) = ( mulGrp ‘ 𝑅 ) ) |
| 30 | 29 8 | eqtr4di | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( mulGrp ‘ 𝑟 ) = 𝑈 ) |
| 31 | 14 | mpteq1d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) = ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) |
| 32 | 30 31 | oveq12d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) = ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) |
| 33 | 20 27 32 | oveq123d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) = ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) |
| 34 | 17 33 | mpteq12dv | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) = ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) |
| 35 | 13 34 | oveq12d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |
| 36 | 12 35 | mpteq12dv | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| 37 | df-mdet | ⊢ maDet = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑟 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑛 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑟 ) ∘ ( pmSgn ‘ 𝑛 ) ) ‘ 𝑝 ) ( .r ‘ 𝑟 ) ( ( mulGrp ‘ 𝑟 ) Σg ( 𝑥 ∈ 𝑛 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) | |
| 38 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 39 | 38 | mptex | ⊢ ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ∈ V |
| 40 | 36 37 39 | ovmpoa | ⊢ ( ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 maDet 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| 41 | 37 | reldmmpo | ⊢ Rel dom maDet |
| 42 | 41 | ovprc | ⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 maDet 𝑅 ) = ∅ ) |
| 43 | mpt0 | ⊢ ( 𝑚 ∈ ∅ ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = ∅ | |
| 44 | 42 43 | eqtr4di | ⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 maDet 𝑅 ) = ( 𝑚 ∈ ∅ ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| 45 | df-mat | ⊢ Mat = ( 𝑦 ∈ Fin , 𝑧 ∈ V ↦ ( ( 𝑧 freeLMod ( 𝑦 × 𝑦 ) ) sSet 〈 ( .r ‘ ndx ) , ( 𝑧 maMul 〈 𝑦 , 𝑦 , 𝑦 〉 ) 〉 ) ) | |
| 46 | 45 | reldmmpo | ⊢ Rel dom Mat |
| 47 | 46 | ovprc | ⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 Mat 𝑅 ) = ∅ ) |
| 48 | 2 47 | eqtrid | ⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → 𝐴 = ∅ ) |
| 49 | 48 | fveq2d | ⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( Base ‘ 𝐴 ) = ( Base ‘ ∅ ) ) |
| 50 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 51 | 49 3 50 | 3eqtr4g | ⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → 𝐵 = ∅ ) |
| 52 | 51 | mpteq1d | ⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) = ( 𝑚 ∈ ∅ ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| 53 | 44 52 | eqtr4d | ⊢ ( ¬ ( 𝑁 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑁 maDet 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) ) |
| 54 | 40 53 | pm2.61i | ⊢ ( 𝑁 maDet 𝑅 ) = ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |
| 55 | 1 54 | eqtri | ⊢ 𝐷 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑅 Σg ( 𝑝 ∈ 𝑃 ↦ ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑝 ) · ( 𝑈 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑚 𝑥 ) ) ) ) ) ) ) |