This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function for 0-dimensional matrices on a given ring is a bijection from the singleton containing the empty set (empty matrix) onto the singleton containing the unity element of that ring. (Contributed by AV, 28-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mdet0f1o | ⊢ ( 𝑅 ∈ Ring → ( ∅ maDet 𝑅 ) : { ∅ } –1-1-onto→ { ( 1r ‘ 𝑅 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdet0pr | ⊢ ( 𝑅 ∈ Ring → ( ∅ maDet 𝑅 ) = { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } ) | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | fvex | ⊢ ( 1r ‘ 𝑅 ) ∈ V | |
| 4 | 2 3 | f1osn | ⊢ { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } : { ∅ } –1-1-onto→ { ( 1r ‘ 𝑅 ) } |
| 5 | f1oeq1 | ⊢ ( ( ∅ maDet 𝑅 ) = { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } → ( ( ∅ maDet 𝑅 ) : { ∅ } –1-1-onto→ { ( 1r ‘ 𝑅 ) } ↔ { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } : { ∅ } –1-1-onto→ { ( 1r ‘ 𝑅 ) } ) ) | |
| 6 | 4 5 | mpbiri | ⊢ ( ( ∅ maDet 𝑅 ) = { 〈 ∅ , ( 1r ‘ 𝑅 ) 〉 } → ( ∅ maDet 𝑅 ) : { ∅ } –1-1-onto→ { ( 1r ‘ 𝑅 ) } ) |
| 7 | 1 6 | syl | ⊢ ( 𝑅 ∈ Ring → ( ∅ maDet 𝑅 ) : { ∅ } –1-1-onto→ { ( 1r ‘ 𝑅 ) } ) |