This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sign of an even permutation embedded into a ring is the unity element of the ring. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhpsgnevpm.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
| zrhpsgnevpm.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| zrhpsgnevpm.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | zrhpsgnevpm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhpsgnevpm.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
| 2 | zrhpsgnevpm.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 3 | zrhpsgnevpm.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 5 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) = ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) | |
| 6 | 4 2 5 | psgnghm2 | ⊢ ( 𝑁 ∈ Fin → 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 7 | eqid | ⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 8 | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) = ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) | |
| 9 | 7 8 | ghmf | ⊢ ( 𝑆 ∈ ( ( SymGrp ‘ 𝑁 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) → 𝑆 : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 10 | 6 9 | syl | ⊢ ( 𝑁 ∈ Fin → 𝑆 : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → 𝑆 : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ) |
| 12 | 4 7 | evpmss | ⊢ ( pmEven ‘ 𝑁 ) ⊆ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 13 | 12 | sseli | ⊢ ( 𝐹 ∈ ( pmEven ‘ 𝑁 ) → 𝐹 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → 𝐹 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) |
| 15 | fvco3 | ⊢ ( ( 𝑆 : ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ⟶ ( Base ‘ ( ( mulGrp ‘ ℂfld ) ↾s { 1 , - 1 } ) ) ∧ 𝐹 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) | |
| 16 | 11 14 15 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) ) |
| 17 | 4 7 2 | psgnevpm | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( 𝑆 ‘ 𝐹 ) = 1 ) |
| 18 | 17 | 3adant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( 𝑆 ‘ 𝐹 ) = 1 ) |
| 19 | 18 | fveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝐹 ) ) = ( 𝑌 ‘ 1 ) ) |
| 20 | 1 3 | zrh1 | ⊢ ( 𝑅 ∈ Ring → ( 𝑌 ‘ 1 ) = 1 ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( 𝑌 ‘ 1 ) = 1 ) |
| 22 | 16 19 21 | 3eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ ( pmEven ‘ 𝑁 ) ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝐹 ) = 1 ) |