This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is the one and only matrix of dimension 0, called "the empty matrix". (Contributed by AV, 27-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mat0dimbas0 | ⊢ ( 𝑅 ∈ 𝑉 → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xp | ⊢ ( ∅ × ∅ ) = ∅ | |
| 2 | 1 | a1i | ⊢ ( 𝑅 ∈ 𝑉 → ( ∅ × ∅ ) = ∅ ) |
| 3 | 2 | oveq2d | ⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ( ∅ × ∅ ) ) = ( ( Base ‘ 𝑅 ) ↑m ∅ ) ) |
| 4 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 5 | map0e | ⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) | |
| 6 | 4 5 | mp1i | ⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ∅ ) = 1o ) |
| 7 | 3 6 | eqtrd | ⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ( ∅ × ∅ ) ) = 1o ) |
| 8 | 0fi | ⊢ ∅ ∈ Fin | |
| 9 | eqid | ⊢ ( ∅ Mat 𝑅 ) = ( ∅ Mat 𝑅 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | 9 10 | matbas2 | ⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m ( ∅ × ∅ ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
| 12 | 8 11 | mpan | ⊢ ( 𝑅 ∈ 𝑉 → ( ( Base ‘ 𝑅 ) ↑m ( ∅ × ∅ ) ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) ) |
| 13 | df1o2 | ⊢ 1o = { ∅ } | |
| 14 | 13 | a1i | ⊢ ( 𝑅 ∈ 𝑉 → 1o = { ∅ } ) |
| 15 | 7 12 14 | 3eqtr3d | ⊢ ( 𝑅 ∈ 𝑉 → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) |