This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant function for 0-dimensional matrices on a given ring is the function mapping the empty set to the unity element of that ring. (Contributed by AV, 28-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mdet0pr | |- ( R e. Ring -> ( (/) maDet R ) = { <. (/) , ( 1r ` R ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( (/) maDet R ) = ( (/) maDet R ) |
|
| 2 | eqid | |- ( (/) Mat R ) = ( (/) Mat R ) |
|
| 3 | eqid | |- ( Base ` ( (/) Mat R ) ) = ( Base ` ( (/) Mat R ) ) |
|
| 4 | eqid | |- ( Base ` ( SymGrp ` (/) ) ) = ( Base ` ( SymGrp ` (/) ) ) |
|
| 5 | eqid | |- ( ZRHom ` R ) = ( ZRHom ` R ) |
|
| 6 | eqid | |- ( pmSgn ` (/) ) = ( pmSgn ` (/) ) |
|
| 7 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 8 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 9 | 1 2 3 4 5 6 7 8 | mdetfval | |- ( (/) maDet R ) = ( m e. ( Base ` ( (/) Mat R ) ) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
| 10 | 9 | a1i | |- ( R e. Ring -> ( (/) maDet R ) = ( m e. ( Base ` ( (/) Mat R ) ) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 11 | mat0dimbas0 | |- ( R e. Ring -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
|
| 12 | 11 | mpteq1d | |- ( R e. Ring -> ( m e. ( Base ` ( (/) Mat R ) ) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = ( m e. { (/) } |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 13 | 0ex | |- (/) e. _V |
|
| 14 | 13 | a1i | |- ( R e. Ring -> (/) e. _V ) |
| 15 | ovex | |- ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) e. _V |
|
| 16 | oveq | |- ( m = (/) -> ( ( p ` x ) m x ) = ( ( p ` x ) (/) x ) ) |
|
| 17 | 16 | mpteq2dv | |- ( m = (/) -> ( x e. (/) |-> ( ( p ` x ) m x ) ) = ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) |
| 18 | 17 | oveq2d | |- ( m = (/) -> ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) = ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) |
| 19 | 18 | oveq2d | |- ( m = (/) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) |
| 20 | 19 | mpteq2dv | |- ( m = (/) -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) = ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) |
| 21 | 20 | oveq2d | |- ( m = (/) -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) ) |
| 22 | 21 | fmptsng | |- ( ( (/) e. _V /\ ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) e. _V ) -> { <. (/) , ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) >. } = ( m e. { (/) } |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 23 | 14 15 22 | sylancl | |- ( R e. Ring -> { <. (/) , ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) >. } = ( m e. { (/) } |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 24 | mpt0 | |- ( x e. (/) |-> ( ( p ` x ) (/) x ) ) = (/) |
|
| 25 | 24 | a1i | |- ( R e. Ring -> ( x e. (/) |-> ( ( p ` x ) (/) x ) ) = (/) ) |
| 26 | 25 | oveq2d | |- ( R e. Ring -> ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) = ( ( mulGrp ` R ) gsum (/) ) ) |
| 27 | eqid | |- ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) ) |
|
| 28 | 27 | gsum0 | |- ( ( mulGrp ` R ) gsum (/) ) = ( 0g ` ( mulGrp ` R ) ) |
| 29 | 26 28 | eqtrdi | |- ( R e. Ring -> ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) = ( 0g ` ( mulGrp ` R ) ) ) |
| 30 | 29 | oveq2d | |- ( R e. Ring -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) |
| 31 | 30 | mpteq2dv | |- ( R e. Ring -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) = ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) ) |
| 32 | 31 | oveq2d | |- ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) ) ) |
| 33 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 34 | 8 33 | ringidval | |- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
| 35 | 34 | eqcomi | |- ( 0g ` ( mulGrp ` R ) ) = ( 1r ` R ) |
| 36 | 35 | a1i | |- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( 0g ` ( mulGrp ` R ) ) = ( 1r ` R ) ) |
| 37 | 36 | oveq2d | |- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 1r ` R ) ) ) |
| 38 | 0fi | |- (/) e. Fin |
|
| 39 | 4 6 5 | zrhcopsgnelbas | |- ( ( R e. Ring /\ (/) e. Fin /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) e. ( Base ` R ) ) |
| 40 | 38 39 | mp3an2 | |- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) e. ( Base ` R ) ) |
| 41 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 42 | 41 7 33 | ringridm | |- ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) e. ( Base ` R ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 1r ` R ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) |
| 43 | 40 42 | syldan | |- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 1r ` R ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) |
| 44 | 37 43 | eqtrd | |- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) |
| 45 | 44 | mpteq2dva | |- ( R e. Ring -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) = ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) ) |
| 46 | 45 | oveq2d | |- ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( 0g ` ( mulGrp ` R ) ) ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) ) ) |
| 47 | simpl | |- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> R e. Ring ) |
|
| 48 | 38 | a1i | |- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> (/) e. Fin ) |
| 49 | simpr | |- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> p e. ( Base ` ( SymGrp ` (/) ) ) ) |
|
| 50 | elsni | |- ( p e. { (/) } -> p = (/) ) |
|
| 51 | fveq2 | |- ( p = (/) -> ( ( pmSgn ` (/) ) ` p ) = ( ( pmSgn ` (/) ) ` (/) ) ) |
|
| 52 | psgn0fv0 | |- ( ( pmSgn ` (/) ) ` (/) ) = 1 |
|
| 53 | 51 52 | eqtrdi | |- ( p = (/) -> ( ( pmSgn ` (/) ) ` p ) = 1 ) |
| 54 | 50 53 | syl | |- ( p e. { (/) } -> ( ( pmSgn ` (/) ) ` p ) = 1 ) |
| 55 | symgbas0 | |- ( Base ` ( SymGrp ` (/) ) ) = { (/) } |
|
| 56 | 54 55 | eleq2s | |- ( p e. ( Base ` ( SymGrp ` (/) ) ) -> ( ( pmSgn ` (/) ) ` p ) = 1 ) |
| 57 | 56 | adantl | |- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( pmSgn ` (/) ) ` p ) = 1 ) |
| 58 | eqid | |- ( SymGrp ` (/) ) = ( SymGrp ` (/) ) |
|
| 59 | 58 4 6 | psgnevpmb | |- ( (/) e. Fin -> ( p e. ( pmEven ` (/) ) <-> ( p e. ( Base ` ( SymGrp ` (/) ) ) /\ ( ( pmSgn ` (/) ) ` p ) = 1 ) ) ) |
| 60 | 48 59 | syl | |- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( p e. ( pmEven ` (/) ) <-> ( p e. ( Base ` ( SymGrp ` (/) ) ) /\ ( ( pmSgn ` (/) ) ` p ) = 1 ) ) ) |
| 61 | 49 57 60 | mpbir2and | |- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> p e. ( pmEven ` (/) ) ) |
| 62 | 5 6 33 | zrhpsgnevpm | |- ( ( R e. Ring /\ (/) e. Fin /\ p e. ( pmEven ` (/) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) = ( 1r ` R ) ) |
| 63 | 47 48 61 62 | syl3anc | |- ( ( R e. Ring /\ p e. ( Base ` ( SymGrp ` (/) ) ) ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) = ( 1r ` R ) ) |
| 64 | 63 | mpteq2dva | |- ( R e. Ring -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) = ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( 1r ` R ) ) ) |
| 65 | 64 | oveq2d | |- ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) ) = ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( 1r ` R ) ) ) ) |
| 66 | 55 | a1i | |- ( R e. Ring -> ( Base ` ( SymGrp ` (/) ) ) = { (/) } ) |
| 67 | 66 | mpteq1d | |- ( R e. Ring -> ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( 1r ` R ) ) = ( p e. { (/) } |-> ( 1r ` R ) ) ) |
| 68 | 67 | oveq2d | |- ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( 1r ` R ) ) ) = ( R gsum ( p e. { (/) } |-> ( 1r ` R ) ) ) ) |
| 69 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 70 | 41 33 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 71 | eqidd | |- ( p = (/) -> ( 1r ` R ) = ( 1r ` R ) ) |
|
| 72 | 41 71 | gsumsn | |- ( ( R e. Mnd /\ (/) e. _V /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( R gsum ( p e. { (/) } |-> ( 1r ` R ) ) ) = ( 1r ` R ) ) |
| 73 | 69 14 70 72 | syl3anc | |- ( R e. Ring -> ( R gsum ( p e. { (/) } |-> ( 1r ` R ) ) ) = ( 1r ` R ) ) |
| 74 | 65 68 73 | 3eqtrd | |- ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ) ) = ( 1r ` R ) ) |
| 75 | 32 46 74 | 3eqtrd | |- ( R e. Ring -> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) = ( 1r ` R ) ) |
| 76 | 75 | opeq2d | |- ( R e. Ring -> <. (/) , ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) >. = <. (/) , ( 1r ` R ) >. ) |
| 77 | 76 | sneqd | |- ( R e. Ring -> { <. (/) , ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) (/) x ) ) ) ) ) ) >. } = { <. (/) , ( 1r ` R ) >. } ) |
| 78 | 23 77 | eqtr3d | |- ( R e. Ring -> ( m e. { (/) } |-> ( R gsum ( p e. ( Base ` ( SymGrp ` (/) ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` (/) ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. (/) |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = { <. (/) , ( 1r ` R ) >. } ) |
| 79 | 10 12 78 | 3eqtrd | |- ( R e. Ring -> ( (/) maDet R ) = { <. (/) , ( 1r ` R ) >. } ) |