This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ismbfcn2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| Assertion | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbfcn2.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 2 | 1 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 3 | ismbfcn | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ) ) ) |
| 5 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ℜ : ℂ ⟶ ℝ ) |
| 7 | 6 1 | cofmpt | ⊢ ( 𝜑 → ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) |
| 8 | 7 | eleq1d | ⊢ ( 𝜑 → ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ) ) |
| 9 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ℑ : ℂ ⟶ ℝ ) |
| 11 | 10 1 | cofmpt | ⊢ ( 𝜑 → ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) |
| 12 | 11 | eleq1d | ⊢ ( 𝜑 → ( ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) |
| 13 | 8 12 | anbi12d | ⊢ ( 𝜑 → ( ( ( ℜ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ∈ MblFn ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) ) |
| 14 | 4 13 | bitrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ∈ MblFn ) ) ) |