This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the domain of a measurability predicate. (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfss.1 | |- ( ph -> A C_ B ) |
|
| mbfss.2 | |- ( ph -> B e. dom vol ) |
||
| mbfss.3 | |- ( ( ph /\ x e. A ) -> C e. V ) |
||
| mbfss.4 | |- ( ( ph /\ x e. ( B \ A ) ) -> C = 0 ) |
||
| mbfss.5 | |- ( ph -> ( x e. A |-> C ) e. MblFn ) |
||
| Assertion | mbfss | |- ( ph -> ( x e. B |-> C ) e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfss.1 | |- ( ph -> A C_ B ) |
|
| 2 | mbfss.2 | |- ( ph -> B e. dom vol ) |
|
| 3 | mbfss.3 | |- ( ( ph /\ x e. A ) -> C e. V ) |
|
| 4 | mbfss.4 | |- ( ( ph /\ x e. ( B \ A ) ) -> C = 0 ) |
|
| 5 | mbfss.5 | |- ( ph -> ( x e. A |-> C ) e. MblFn ) |
|
| 6 | elun | |- ( x e. ( A u. ( B \ A ) ) <-> ( x e. A \/ x e. ( B \ A ) ) ) |
|
| 7 | undif2 | |- ( A u. ( B \ A ) ) = ( A u. B ) |
|
| 8 | ssequn1 | |- ( A C_ B <-> ( A u. B ) = B ) |
|
| 9 | 1 8 | sylib | |- ( ph -> ( A u. B ) = B ) |
| 10 | 7 9 | eqtrid | |- ( ph -> ( A u. ( B \ A ) ) = B ) |
| 11 | 10 | eleq2d | |- ( ph -> ( x e. ( A u. ( B \ A ) ) <-> x e. B ) ) |
| 12 | 6 11 | bitr3id | |- ( ph -> ( ( x e. A \/ x e. ( B \ A ) ) <-> x e. B ) ) |
| 13 | 12 | biimpar | |- ( ( ph /\ x e. B ) -> ( x e. A \/ x e. ( B \ A ) ) ) |
| 14 | 5 3 | mbfmptcl | |- ( ( ph /\ x e. A ) -> C e. CC ) |
| 15 | 0cn | |- 0 e. CC |
|
| 16 | 4 15 | eqeltrdi | |- ( ( ph /\ x e. ( B \ A ) ) -> C e. CC ) |
| 17 | 14 16 | jaodan | |- ( ( ph /\ ( x e. A \/ x e. ( B \ A ) ) ) -> C e. CC ) |
| 18 | 13 17 | syldan | |- ( ( ph /\ x e. B ) -> C e. CC ) |
| 19 | 18 | recld | |- ( ( ph /\ x e. B ) -> ( Re ` C ) e. RR ) |
| 20 | 19 | fmpttd | |- ( ph -> ( x e. B |-> ( Re ` C ) ) : B --> RR ) |
| 21 | 1 | resmptd | |- ( ph -> ( ( x e. B |-> ( Re ` C ) ) |` A ) = ( x e. A |-> ( Re ` C ) ) ) |
| 22 | 14 | ismbfcn2 | |- ( ph -> ( ( x e. A |-> C ) e. MblFn <-> ( ( x e. A |-> ( Re ` C ) ) e. MblFn /\ ( x e. A |-> ( Im ` C ) ) e. MblFn ) ) ) |
| 23 | 5 22 | mpbid | |- ( ph -> ( ( x e. A |-> ( Re ` C ) ) e. MblFn /\ ( x e. A |-> ( Im ` C ) ) e. MblFn ) ) |
| 24 | 23 | simpld | |- ( ph -> ( x e. A |-> ( Re ` C ) ) e. MblFn ) |
| 25 | 21 24 | eqeltrd | |- ( ph -> ( ( x e. B |-> ( Re ` C ) ) |` A ) e. MblFn ) |
| 26 | difss | |- ( B \ A ) C_ B |
|
| 27 | resmpt | |- ( ( B \ A ) C_ B -> ( ( x e. B |-> ( Re ` C ) ) |` ( B \ A ) ) = ( x e. ( B \ A ) |-> ( Re ` C ) ) ) |
|
| 28 | 26 27 | ax-mp | |- ( ( x e. B |-> ( Re ` C ) ) |` ( B \ A ) ) = ( x e. ( B \ A ) |-> ( Re ` C ) ) |
| 29 | 4 | fveq2d | |- ( ( ph /\ x e. ( B \ A ) ) -> ( Re ` C ) = ( Re ` 0 ) ) |
| 30 | re0 | |- ( Re ` 0 ) = 0 |
|
| 31 | 29 30 | eqtrdi | |- ( ( ph /\ x e. ( B \ A ) ) -> ( Re ` C ) = 0 ) |
| 32 | 31 | mpteq2dva | |- ( ph -> ( x e. ( B \ A ) |-> ( Re ` C ) ) = ( x e. ( B \ A ) |-> 0 ) ) |
| 33 | 28 32 | eqtrid | |- ( ph -> ( ( x e. B |-> ( Re ` C ) ) |` ( B \ A ) ) = ( x e. ( B \ A ) |-> 0 ) ) |
| 34 | fconstmpt | |- ( ( B \ A ) X. { 0 } ) = ( x e. ( B \ A ) |-> 0 ) |
|
| 35 | 5 3 | mbfdm2 | |- ( ph -> A e. dom vol ) |
| 36 | difmbl | |- ( ( B e. dom vol /\ A e. dom vol ) -> ( B \ A ) e. dom vol ) |
|
| 37 | 2 35 36 | syl2anc | |- ( ph -> ( B \ A ) e. dom vol ) |
| 38 | mbfconst | |- ( ( ( B \ A ) e. dom vol /\ 0 e. CC ) -> ( ( B \ A ) X. { 0 } ) e. MblFn ) |
|
| 39 | 37 15 38 | sylancl | |- ( ph -> ( ( B \ A ) X. { 0 } ) e. MblFn ) |
| 40 | 34 39 | eqeltrrid | |- ( ph -> ( x e. ( B \ A ) |-> 0 ) e. MblFn ) |
| 41 | 33 40 | eqeltrd | |- ( ph -> ( ( x e. B |-> ( Re ` C ) ) |` ( B \ A ) ) e. MblFn ) |
| 42 | 20 25 41 10 | mbfres2 | |- ( ph -> ( x e. B |-> ( Re ` C ) ) e. MblFn ) |
| 43 | 18 | imcld | |- ( ( ph /\ x e. B ) -> ( Im ` C ) e. RR ) |
| 44 | 43 | fmpttd | |- ( ph -> ( x e. B |-> ( Im ` C ) ) : B --> RR ) |
| 45 | 1 | resmptd | |- ( ph -> ( ( x e. B |-> ( Im ` C ) ) |` A ) = ( x e. A |-> ( Im ` C ) ) ) |
| 46 | 23 | simprd | |- ( ph -> ( x e. A |-> ( Im ` C ) ) e. MblFn ) |
| 47 | 45 46 | eqeltrd | |- ( ph -> ( ( x e. B |-> ( Im ` C ) ) |` A ) e. MblFn ) |
| 48 | resmpt | |- ( ( B \ A ) C_ B -> ( ( x e. B |-> ( Im ` C ) ) |` ( B \ A ) ) = ( x e. ( B \ A ) |-> ( Im ` C ) ) ) |
|
| 49 | 26 48 | ax-mp | |- ( ( x e. B |-> ( Im ` C ) ) |` ( B \ A ) ) = ( x e. ( B \ A ) |-> ( Im ` C ) ) |
| 50 | 4 | fveq2d | |- ( ( ph /\ x e. ( B \ A ) ) -> ( Im ` C ) = ( Im ` 0 ) ) |
| 51 | im0 | |- ( Im ` 0 ) = 0 |
|
| 52 | 50 51 | eqtrdi | |- ( ( ph /\ x e. ( B \ A ) ) -> ( Im ` C ) = 0 ) |
| 53 | 52 | mpteq2dva | |- ( ph -> ( x e. ( B \ A ) |-> ( Im ` C ) ) = ( x e. ( B \ A ) |-> 0 ) ) |
| 54 | 49 53 | eqtrid | |- ( ph -> ( ( x e. B |-> ( Im ` C ) ) |` ( B \ A ) ) = ( x e. ( B \ A ) |-> 0 ) ) |
| 55 | 54 40 | eqeltrd | |- ( ph -> ( ( x e. B |-> ( Im ` C ) ) |` ( B \ A ) ) e. MblFn ) |
| 56 | 44 47 55 10 | mbfres2 | |- ( ph -> ( x e. B |-> ( Im ` C ) ) e. MblFn ) |
| 57 | 18 | ismbfcn2 | |- ( ph -> ( ( x e. B |-> C ) e. MblFn <-> ( ( x e. B |-> ( Re ` C ) ) e. MblFn /\ ( x e. B |-> ( Im ` C ) ) e. MblFn ) ) ) |
| 58 | 42 56 57 | mpbir2and | |- ( ph -> ( x e. B |-> C ) e. MblFn ) |