This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equal spans of singletons must have proportional vectors. See lspsnss2 for comparable span version. TODO: can proof be shortened? (Contributed by NM, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsneq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsneq.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | ||
| lspsneq.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| lspsneq.o | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| lspsneq.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lspsneq.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsneq.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspsneq.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspsneq.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lspsneq | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑘 · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsneq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsneq.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | |
| 3 | lspsneq.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 4 | lspsneq.o | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 5 | lspsneq.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | lspsneq.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 7 | lspsneq.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 8 | lspsneq.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 9 | lspsneq.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 10 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 11 | 7 10 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 | 2 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝑆 ∈ Ring ) |
| 13 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 14 | 3 13 | ringidcl | ⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ 𝐾 ) |
| 15 | 11 12 14 | 3syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ 𝐾 ) |
| 16 | 2 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → 𝑆 ∈ DivRing ) |
| 17 | 4 13 | drngunz | ⊢ ( 𝑆 ∈ DivRing → ( 1r ‘ 𝑆 ) ≠ 0 ) |
| 18 | 7 16 17 | 3syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ≠ 0 ) |
| 19 | eldifsn | ⊢ ( ( 1r ‘ 𝑆 ) ∈ ( 𝐾 ∖ { 0 } ) ↔ ( ( 1r ‘ 𝑆 ) ∈ 𝐾 ∧ ( 1r ‘ 𝑆 ) ≠ 0 ) ) | |
| 20 | 15 18 19 | sylanbrc | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( 𝐾 ∖ { 0 } ) ) |
| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 = ( 0g ‘ 𝑊 ) ) → ( 1r ‘ 𝑆 ) ∈ ( 𝐾 ∖ { 0 } ) ) |
| 22 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 23 | 1 22 | lmod0vcl | ⊢ ( 𝑊 ∈ LMod → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
| 24 | 1 2 5 13 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) → ( ( 1r ‘ 𝑆 ) · ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 25 | 11 23 24 | syl2anc2 | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑆 ) · ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 = ( 0g ‘ 𝑊 ) ) → ( ( 1r ‘ 𝑆 ) · ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 27 | oveq2 | ⊢ ( 𝑌 = ( 0g ‘ 𝑊 ) → ( ( 1r ‘ 𝑆 ) · 𝑌 ) = ( ( 1r ‘ 𝑆 ) · ( 0g ‘ 𝑊 ) ) ) | |
| 28 | 27 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 = ( 0g ‘ 𝑊 ) ) → ( ( 1r ‘ 𝑆 ) · 𝑌 ) = ( ( 1r ‘ 𝑆 ) · ( 0g ‘ 𝑊 ) ) ) |
| 29 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → 𝑊 ∈ LMod ) |
| 30 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ 𝑉 ) |
| 31 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → 𝑌 ∈ 𝑉 ) |
| 32 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) | |
| 33 | 1 22 6 29 30 31 32 | lspsneq0b | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑋 = ( 0g ‘ 𝑊 ) ↔ 𝑌 = ( 0g ‘ 𝑊 ) ) ) |
| 34 | 33 | biimpar | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 = ( 0g ‘ 𝑊 ) ) → 𝑋 = ( 0g ‘ 𝑊 ) ) |
| 35 | 26 28 34 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 = ( 0g ‘ 𝑊 ) ) → 𝑋 = ( ( 1r ‘ 𝑆 ) · 𝑌 ) ) |
| 36 | oveq1 | ⊢ ( 𝑗 = ( 1r ‘ 𝑆 ) → ( 𝑗 · 𝑌 ) = ( ( 1r ‘ 𝑆 ) · 𝑌 ) ) | |
| 37 | 36 | rspceeqv | ⊢ ( ( ( 1r ‘ 𝑆 ) ∈ ( 𝐾 ∖ { 0 } ) ∧ 𝑋 = ( ( 1r ‘ 𝑆 ) · 𝑌 ) ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) |
| 38 | 21 35 37 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 = ( 0g ‘ 𝑊 ) ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) |
| 39 | eqimss | ⊢ ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 40 | 39 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) |
| 41 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 42 | 1 41 6 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 43 | 11 9 42 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 45 | 1 41 6 29 44 30 | ellspsn5b | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 46 | 40 45 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 47 | 2 3 1 5 6 | ellspsn | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑗 ∈ 𝐾 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
| 48 | 29 31 47 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑗 ∈ 𝐾 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
| 49 | 46 48 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ∃ 𝑗 ∈ 𝐾 𝑋 = ( 𝑗 · 𝑌 ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ∃ 𝑗 ∈ 𝐾 𝑋 = ( 𝑗 · 𝑌 ) ) |
| 51 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑗 ∈ 𝐾 ) | |
| 52 | simpr | ⊢ ( ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) → 𝑋 = ( 𝑗 · 𝑌 ) ) | |
| 53 | 52 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑋 = ( 𝑗 · 𝑌 ) ) |
| 54 | 33 | biimpd | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑋 = ( 0g ‘ 𝑊 ) → 𝑌 = ( 0g ‘ 𝑊 ) ) ) |
| 55 | 54 | necon3d | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑌 ≠ ( 0g ‘ 𝑊 ) → 𝑋 ≠ ( 0g ‘ 𝑊 ) ) ) |
| 56 | 55 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 𝑋 ≠ ( 0g ‘ 𝑊 ) ) |
| 57 | 56 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑋 ≠ ( 0g ‘ 𝑊 ) ) |
| 58 | 53 57 | eqnetrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → ( 𝑗 · 𝑌 ) ≠ ( 0g ‘ 𝑊 ) ) |
| 59 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → 𝑊 ∈ LVec ) |
| 60 | 59 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑊 ∈ LVec ) |
| 61 | 31 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑌 ∈ 𝑉 ) |
| 62 | 1 5 2 3 4 22 60 51 61 | lvecvsn0 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → ( ( 𝑗 · 𝑌 ) ≠ ( 0g ‘ 𝑊 ) ↔ ( 𝑗 ≠ 0 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ) ) |
| 63 | 58 62 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → ( 𝑗 ≠ 0 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ) |
| 64 | 63 | simpld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑗 ≠ 0 ) |
| 65 | eldifsn | ⊢ ( 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ↔ ( 𝑗 ∈ 𝐾 ∧ 𝑗 ≠ 0 ) ) | |
| 66 | 51 64 65 | sylanbrc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑋 = ( 𝑗 · 𝑌 ) ) ) → 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ) |
| 67 | 50 66 53 | reximssdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) |
| 68 | 38 67 | pm2.61dane | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) |
| 69 | 68 | ex | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
| 70 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ) → 𝑊 ∈ LVec ) |
| 71 | eldifi | ⊢ ( 𝑗 ∈ ( 𝐾 ∖ { 0 } ) → 𝑗 ∈ 𝐾 ) | |
| 72 | 71 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ) → 𝑗 ∈ 𝐾 ) |
| 73 | eldifsni | ⊢ ( 𝑗 ∈ ( 𝐾 ∖ { 0 } ) → 𝑗 ≠ 0 ) | |
| 74 | 73 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ) → 𝑗 ≠ 0 ) |
| 75 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ) → 𝑌 ∈ 𝑉 ) |
| 76 | 1 2 5 3 4 6 | lspsnvs | ⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑗 ∈ 𝐾 ∧ 𝑗 ≠ 0 ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑗 · 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 77 | 70 72 74 75 76 | syl121anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) ) → ( 𝑁 ‘ { ( 𝑗 · 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 78 | 77 | ex | ⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ∖ { 0 } ) → ( 𝑁 ‘ { ( 𝑗 · 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 79 | sneq | ⊢ ( 𝑋 = ( 𝑗 · 𝑌 ) → { 𝑋 } = { ( 𝑗 · 𝑌 ) } ) | |
| 80 | 79 | fveqeq2d | ⊢ ( 𝑋 = ( 𝑗 · 𝑌 ) → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { ( 𝑗 · 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 81 | 80 | biimprcd | ⊢ ( ( 𝑁 ‘ { ( 𝑗 · 𝑌 ) } ) = ( 𝑁 ‘ { 𝑌 } ) → ( 𝑋 = ( 𝑗 · 𝑌 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 82 | 78 81 | syl6 | ⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝐾 ∖ { 0 } ) → ( 𝑋 = ( 𝑗 · 𝑌 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 83 | 82 | rexlimdv | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 84 | 69 83 | impbid | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
| 85 | oveq1 | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 · 𝑌 ) = ( 𝑘 · 𝑌 ) ) | |
| 86 | 85 | eqeq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝑋 = ( 𝑗 · 𝑌 ) ↔ 𝑋 = ( 𝑘 · 𝑌 ) ) ) |
| 87 | 86 | cbvrexvw | ⊢ ( ∃ 𝑗 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑗 · 𝑌 ) ↔ ∃ 𝑘 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑘 · 𝑌 ) ) |
| 88 | 84 87 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ ( 𝐾 ∖ { 0 } ) 𝑋 = ( 𝑘 · 𝑌 ) ) ) |