This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparable spans of singletons must have proportional vectors. See lspsneq for equal span version. (Contributed by NM, 7-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnss2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsnss2.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | ||
| lspsnss2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| lspsnss2.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lspsnss2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsnss2.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspsnss2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspsnss2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lspsnss2 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnss2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsnss2.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | |
| 3 | lspsnss2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 4 | lspsnss2.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | lspsnss2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 6 | lspsnss2.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 7 | lspsnss2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 8 | lspsnss2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 9 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 10 | 1 9 5 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 | 6 8 10 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 | 1 9 5 6 11 7 | ellspsn5b | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 13 | 2 3 1 4 5 | ellspsn | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑌 ) ) ) |
| 14 | 6 8 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑌 ) ) ) |
| 15 | 12 14 | bitr3d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑋 = ( 𝑘 · 𝑌 ) ) ) |