This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equal spans of singletons must have proportional vectors. See lspsnss2 for comparable span version. TODO: can proof be shortened? (Contributed by NM, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsneq.v | |- V = ( Base ` W ) |
|
| lspsneq.s | |- S = ( Scalar ` W ) |
||
| lspsneq.k | |- K = ( Base ` S ) |
||
| lspsneq.o | |- .0. = ( 0g ` S ) |
||
| lspsneq.t | |- .x. = ( .s ` W ) |
||
| lspsneq.n | |- N = ( LSpan ` W ) |
||
| lspsneq.w | |- ( ph -> W e. LVec ) |
||
| lspsneq.x | |- ( ph -> X e. V ) |
||
| lspsneq.y | |- ( ph -> Y e. V ) |
||
| Assertion | lspsneq | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) <-> E. k e. ( K \ { .0. } ) X = ( k .x. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsneq.v | |- V = ( Base ` W ) |
|
| 2 | lspsneq.s | |- S = ( Scalar ` W ) |
|
| 3 | lspsneq.k | |- K = ( Base ` S ) |
|
| 4 | lspsneq.o | |- .0. = ( 0g ` S ) |
|
| 5 | lspsneq.t | |- .x. = ( .s ` W ) |
|
| 6 | lspsneq.n | |- N = ( LSpan ` W ) |
|
| 7 | lspsneq.w | |- ( ph -> W e. LVec ) |
|
| 8 | lspsneq.x | |- ( ph -> X e. V ) |
|
| 9 | lspsneq.y | |- ( ph -> Y e. V ) |
|
| 10 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 11 | 7 10 | syl | |- ( ph -> W e. LMod ) |
| 12 | 2 | lmodring | |- ( W e. LMod -> S e. Ring ) |
| 13 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 14 | 3 13 | ringidcl | |- ( S e. Ring -> ( 1r ` S ) e. K ) |
| 15 | 11 12 14 | 3syl | |- ( ph -> ( 1r ` S ) e. K ) |
| 16 | 2 | lvecdrng | |- ( W e. LVec -> S e. DivRing ) |
| 17 | 4 13 | drngunz | |- ( S e. DivRing -> ( 1r ` S ) =/= .0. ) |
| 18 | 7 16 17 | 3syl | |- ( ph -> ( 1r ` S ) =/= .0. ) |
| 19 | eldifsn | |- ( ( 1r ` S ) e. ( K \ { .0. } ) <-> ( ( 1r ` S ) e. K /\ ( 1r ` S ) =/= .0. ) ) |
|
| 20 | 15 18 19 | sylanbrc | |- ( ph -> ( 1r ` S ) e. ( K \ { .0. } ) ) |
| 21 | 20 | ad2antrr | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y = ( 0g ` W ) ) -> ( 1r ` S ) e. ( K \ { .0. } ) ) |
| 22 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 23 | 1 22 | lmod0vcl | |- ( W e. LMod -> ( 0g ` W ) e. V ) |
| 24 | 1 2 5 13 | lmodvs1 | |- ( ( W e. LMod /\ ( 0g ` W ) e. V ) -> ( ( 1r ` S ) .x. ( 0g ` W ) ) = ( 0g ` W ) ) |
| 25 | 11 23 24 | syl2anc2 | |- ( ph -> ( ( 1r ` S ) .x. ( 0g ` W ) ) = ( 0g ` W ) ) |
| 26 | 25 | ad2antrr | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y = ( 0g ` W ) ) -> ( ( 1r ` S ) .x. ( 0g ` W ) ) = ( 0g ` W ) ) |
| 27 | oveq2 | |- ( Y = ( 0g ` W ) -> ( ( 1r ` S ) .x. Y ) = ( ( 1r ` S ) .x. ( 0g ` W ) ) ) |
|
| 28 | 27 | adantl | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y = ( 0g ` W ) ) -> ( ( 1r ` S ) .x. Y ) = ( ( 1r ` S ) .x. ( 0g ` W ) ) ) |
| 29 | 11 | adantr | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> W e. LMod ) |
| 30 | 8 | adantr | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> X e. V ) |
| 31 | 9 | adantr | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> Y e. V ) |
| 32 | simpr | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
|
| 33 | 1 22 6 29 30 31 32 | lspsneq0b | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( X = ( 0g ` W ) <-> Y = ( 0g ` W ) ) ) |
| 34 | 33 | biimpar | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y = ( 0g ` W ) ) -> X = ( 0g ` W ) ) |
| 35 | 26 28 34 | 3eqtr4rd | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y = ( 0g ` W ) ) -> X = ( ( 1r ` S ) .x. Y ) ) |
| 36 | oveq1 | |- ( j = ( 1r ` S ) -> ( j .x. Y ) = ( ( 1r ` S ) .x. Y ) ) |
|
| 37 | 36 | rspceeqv | |- ( ( ( 1r ` S ) e. ( K \ { .0. } ) /\ X = ( ( 1r ` S ) .x. Y ) ) -> E. j e. ( K \ { .0. } ) X = ( j .x. Y ) ) |
| 38 | 21 35 37 | syl2anc | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y = ( 0g ` W ) ) -> E. j e. ( K \ { .0. } ) X = ( j .x. Y ) ) |
| 39 | eqimss | |- ( ( N ` { X } ) = ( N ` { Y } ) -> ( N ` { X } ) C_ ( N ` { Y } ) ) |
|
| 40 | 39 | adantl | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( N ` { X } ) C_ ( N ` { Y } ) ) |
| 41 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 42 | 1 41 6 | lspsncl | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 43 | 11 9 42 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 44 | 43 | adantr | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 45 | 1 41 6 29 44 30 | ellspsn5b | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( X e. ( N ` { Y } ) <-> ( N ` { X } ) C_ ( N ` { Y } ) ) ) |
| 46 | 40 45 | mpbird | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> X e. ( N ` { Y } ) ) |
| 47 | 2 3 1 5 6 | ellspsn | |- ( ( W e. LMod /\ Y e. V ) -> ( X e. ( N ` { Y } ) <-> E. j e. K X = ( j .x. Y ) ) ) |
| 48 | 29 31 47 | syl2anc | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( X e. ( N ` { Y } ) <-> E. j e. K X = ( j .x. Y ) ) ) |
| 49 | 46 48 | mpbid | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> E. j e. K X = ( j .x. Y ) ) |
| 50 | 49 | adantr | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) -> E. j e. K X = ( j .x. Y ) ) |
| 51 | simprl | |- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> j e. K ) |
|
| 52 | simpr | |- ( ( j e. K /\ X = ( j .x. Y ) ) -> X = ( j .x. Y ) ) |
|
| 53 | 52 | adantl | |- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> X = ( j .x. Y ) ) |
| 54 | 33 | biimpd | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( X = ( 0g ` W ) -> Y = ( 0g ` W ) ) ) |
| 55 | 54 | necon3d | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> ( Y =/= ( 0g ` W ) -> X =/= ( 0g ` W ) ) ) |
| 56 | 55 | imp | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) -> X =/= ( 0g ` W ) ) |
| 57 | 56 | adantr | |- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> X =/= ( 0g ` W ) ) |
| 58 | 53 57 | eqnetrrd | |- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> ( j .x. Y ) =/= ( 0g ` W ) ) |
| 59 | 7 | adantr | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> W e. LVec ) |
| 60 | 59 | ad2antrr | |- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> W e. LVec ) |
| 61 | 31 | ad2antrr | |- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> Y e. V ) |
| 62 | 1 5 2 3 4 22 60 51 61 | lvecvsn0 | |- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> ( ( j .x. Y ) =/= ( 0g ` W ) <-> ( j =/= .0. /\ Y =/= ( 0g ` W ) ) ) ) |
| 63 | 58 62 | mpbid | |- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> ( j =/= .0. /\ Y =/= ( 0g ` W ) ) ) |
| 64 | 63 | simpld | |- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> j =/= .0. ) |
| 65 | eldifsn | |- ( j e. ( K \ { .0. } ) <-> ( j e. K /\ j =/= .0. ) ) |
|
| 66 | 51 64 65 | sylanbrc | |- ( ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) /\ ( j e. K /\ X = ( j .x. Y ) ) ) -> j e. ( K \ { .0. } ) ) |
| 67 | 50 66 53 | reximssdv | |- ( ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) /\ Y =/= ( 0g ` W ) ) -> E. j e. ( K \ { .0. } ) X = ( j .x. Y ) ) |
| 68 | 38 67 | pm2.61dane | |- ( ( ph /\ ( N ` { X } ) = ( N ` { Y } ) ) -> E. j e. ( K \ { .0. } ) X = ( j .x. Y ) ) |
| 69 | 68 | ex | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> E. j e. ( K \ { .0. } ) X = ( j .x. Y ) ) ) |
| 70 | 7 | adantr | |- ( ( ph /\ j e. ( K \ { .0. } ) ) -> W e. LVec ) |
| 71 | eldifi | |- ( j e. ( K \ { .0. } ) -> j e. K ) |
|
| 72 | 71 | adantl | |- ( ( ph /\ j e. ( K \ { .0. } ) ) -> j e. K ) |
| 73 | eldifsni | |- ( j e. ( K \ { .0. } ) -> j =/= .0. ) |
|
| 74 | 73 | adantl | |- ( ( ph /\ j e. ( K \ { .0. } ) ) -> j =/= .0. ) |
| 75 | 9 | adantr | |- ( ( ph /\ j e. ( K \ { .0. } ) ) -> Y e. V ) |
| 76 | 1 2 5 3 4 6 | lspsnvs | |- ( ( W e. LVec /\ ( j e. K /\ j =/= .0. ) /\ Y e. V ) -> ( N ` { ( j .x. Y ) } ) = ( N ` { Y } ) ) |
| 77 | 70 72 74 75 76 | syl121anc | |- ( ( ph /\ j e. ( K \ { .0. } ) ) -> ( N ` { ( j .x. Y ) } ) = ( N ` { Y } ) ) |
| 78 | 77 | ex | |- ( ph -> ( j e. ( K \ { .0. } ) -> ( N ` { ( j .x. Y ) } ) = ( N ` { Y } ) ) ) |
| 79 | sneq | |- ( X = ( j .x. Y ) -> { X } = { ( j .x. Y ) } ) |
|
| 80 | 79 | fveqeq2d | |- ( X = ( j .x. Y ) -> ( ( N ` { X } ) = ( N ` { Y } ) <-> ( N ` { ( j .x. Y ) } ) = ( N ` { Y } ) ) ) |
| 81 | 80 | biimprcd | |- ( ( N ` { ( j .x. Y ) } ) = ( N ` { Y } ) -> ( X = ( j .x. Y ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 82 | 78 81 | syl6 | |- ( ph -> ( j e. ( K \ { .0. } ) -> ( X = ( j .x. Y ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) ) |
| 83 | 82 | rexlimdv | |- ( ph -> ( E. j e. ( K \ { .0. } ) X = ( j .x. Y ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 84 | 69 83 | impbid | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) <-> E. j e. ( K \ { .0. } ) X = ( j .x. Y ) ) ) |
| 85 | oveq1 | |- ( j = k -> ( j .x. Y ) = ( k .x. Y ) ) |
|
| 86 | 85 | eqeq2d | |- ( j = k -> ( X = ( j .x. Y ) <-> X = ( k .x. Y ) ) ) |
| 87 | 86 | cbvrexvw | |- ( E. j e. ( K \ { .0. } ) X = ( j .x. Y ) <-> E. k e. ( K \ { .0. } ) X = ( k .x. Y ) ) |
| 88 | 84 87 | bitrdi | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) <-> E. k e. ( K \ { .0. } ) X = ( k .x. Y ) ) ) |