This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonzero vectors with equal singleton spans have a unique proportionality constant. (Contributed by NM, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsneu.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsneu.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | ||
| lspsneu.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| lspsneu.o | ⊢ 𝑂 = ( 0g ‘ 𝑆 ) | ||
| lspsneu.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lspsneu.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspsneu.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsneu.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspsneu.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspsneu.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
| Assertion | lspsneu | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ∃! 𝑘 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑘 · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsneu.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsneu.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | |
| 3 | lspsneu.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 4 | lspsneu.o | ⊢ 𝑂 = ( 0g ‘ 𝑆 ) | |
| 5 | lspsneu.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | lspsneu.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 7 | lspsneu.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 8 | lspsneu.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 9 | lspsneu.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 10 | lspsneu.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | |
| 11 | 10 | eldifad | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 12 | 1 2 3 4 5 7 8 9 11 | lspsneq | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ∃ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
| 13 | 12 | biimpd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
| 14 | eqtr2 | ⊢ ( ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) → ( 𝑗 · 𝑌 ) = ( 𝑖 · 𝑌 ) ) | |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → ( 𝑗 · 𝑌 ) = ( 𝑖 · 𝑌 ) ) |
| 16 | simp1l | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝜑 ) | |
| 17 | 16 8 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑊 ∈ LVec ) |
| 18 | simp2l | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ) | |
| 19 | 18 | eldifad | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑗 ∈ 𝐾 ) |
| 20 | simp2r | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) | |
| 21 | 20 | eldifad | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑖 ∈ 𝐾 ) |
| 22 | 16 11 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑌 ∈ 𝑉 ) |
| 23 | eldifsni | ⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) → 𝑌 ≠ 0 ) | |
| 24 | 16 10 23 | 3syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑌 ≠ 0 ) |
| 25 | 1 5 2 3 6 17 19 21 22 24 | lvecvscan2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → ( ( 𝑗 · 𝑌 ) = ( 𝑖 · 𝑌 ) ↔ 𝑗 = 𝑖 ) ) |
| 26 | 15 25 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) ∧ ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) ) → 𝑗 = 𝑖 ) |
| 27 | 26 | 3exp | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) → ( ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) → ( ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) → 𝑗 = 𝑖 ) ) ) |
| 28 | 27 | ex | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( ( 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∧ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ) → ( ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) → 𝑗 = 𝑖 ) ) ) ) |
| 29 | 28 | ralrimdvv | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ∀ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∀ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ( ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) → 𝑗 = 𝑖 ) ) ) |
| 30 | 13 29 | jcad | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( ∃ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ∧ ∀ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∀ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ( ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) → 𝑗 = 𝑖 ) ) ) ) |
| 31 | oveq1 | ⊢ ( 𝑗 = 𝑖 → ( 𝑗 · 𝑌 ) = ( 𝑖 · 𝑌 ) ) | |
| 32 | 31 | eqeq2d | ⊢ ( 𝑗 = 𝑖 → ( 𝑋 = ( 𝑗 · 𝑌 ) ↔ 𝑋 = ( 𝑖 · 𝑌 ) ) ) |
| 33 | 32 | reu4 | ⊢ ( ∃! 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ↔ ( ∃ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ∧ ∀ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) ∀ 𝑖 ∈ ( 𝐾 ∖ { 𝑂 } ) ( ( 𝑋 = ( 𝑗 · 𝑌 ) ∧ 𝑋 = ( 𝑖 · 𝑌 ) ) → 𝑗 = 𝑖 ) ) ) |
| 34 | 30 33 | imbitrrdi | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ∃! 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
| 35 | reurex | ⊢ ( ∃! 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) → ∃ 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) | |
| 36 | 35 12 | imbitrrid | ⊢ ( 𝜑 → ( ∃! 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 37 | 34 36 | impbid | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ∃! 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ) ) |
| 38 | oveq1 | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 · 𝑌 ) = ( 𝑘 · 𝑌 ) ) | |
| 39 | 38 | eqeq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝑋 = ( 𝑗 · 𝑌 ) ↔ 𝑋 = ( 𝑘 · 𝑌 ) ) ) |
| 40 | 39 | cbvreuvw | ⊢ ( ∃! 𝑗 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑗 · 𝑌 ) ↔ ∃! 𝑘 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑘 · 𝑌 ) ) |
| 41 | 37 40 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ↔ ∃! 𝑘 ∈ ( 𝐾 ∖ { 𝑂 } ) 𝑋 = ( 𝑘 · 𝑌 ) ) ) |