This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equal singleton spans imply both arguments are zero or both are nonzero. (Contributed by NM, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsneq0b.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsneq0b.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspsneq0b.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsneq0b.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspsneq0b.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspsneq0b.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspsneq0b.e | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) | ||
| Assertion | lspsneq0b | ⊢ ( 𝜑 → ( 𝑋 = 0 ↔ 𝑌 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsneq0b.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsneq0b.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspsneq0b.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspsneq0b.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lspsneq0b.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lspsneq0b.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | lspsneq0b.e | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 9 | 1 2 3 | lspsneq0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
| 10 | 4 5 9 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
| 11 | 10 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) |
| 12 | 8 11 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( 𝑁 ‘ { 𝑌 } ) = { 0 } ) |
| 13 | 1 2 3 | lspsneq0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑌 } ) = { 0 } ↔ 𝑌 = 0 ) ) |
| 14 | 4 6 13 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) = { 0 } ↔ 𝑌 = 0 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → ( ( 𝑁 ‘ { 𝑌 } ) = { 0 } ↔ 𝑌 = 0 ) ) |
| 16 | 12 15 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑋 = 0 ) → 𝑌 = 0 ) |
| 17 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 18 | 14 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑁 ‘ { 𝑌 } ) = { 0 } ) |
| 19 | 17 18 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) |
| 20 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
| 21 | 19 20 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑌 = 0 ) → 𝑋 = 0 ) |
| 22 | 16 21 | impbida | ⊢ ( 𝜑 → ( 𝑋 = 0 ↔ 𝑌 = 0 ) ) |