This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero vector is a vector. ( ax-hv0cl analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0vcl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 0vcl.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | lmod0vcl | ⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0vcl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | 0vcl.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 4 | 1 2 | grpidcl | ⊢ ( 𝑊 ∈ Grp → 0 ∈ 𝑉 ) |
| 5 | 3 4 | syl | ⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝑉 ) |