This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellspsn5b.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ellspsn5b.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| ellspsn5b.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| ellspsn5b.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| ellspsn5b.a | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| ellspsn5b.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | ellspsn5b | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5b.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ellspsn5b.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | ellspsn5b.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | ellspsn5b.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | ellspsn5b.a | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 6 | ellspsn5b.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 7 | 1 2 3 4 5 | ellspsn6 | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) ) |
| 8 | 6 7 | mpbirand | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) |