This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of span of the singleton of a vector. ( elspansn analog.) (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| lspsn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lspsn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| lspsn.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lspsn.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | ellspsn | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑈 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑈 = ( 𝑘 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsn.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | lspsn.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | lspsn.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | lspsn.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | lspsn.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 6 | 1 2 3 4 5 | lspsn | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ) |
| 7 | 6 | eleq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑈 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ 𝑈 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ) ) |
| 8 | id | ⊢ ( 𝑈 = ( 𝑘 · 𝑋 ) → 𝑈 = ( 𝑘 · 𝑋 ) ) | |
| 9 | ovex | ⊢ ( 𝑘 · 𝑋 ) ∈ V | |
| 10 | 8 9 | eqeltrdi | ⊢ ( 𝑈 = ( 𝑘 · 𝑋 ) → 𝑈 ∈ V ) |
| 11 | 10 | rexlimivw | ⊢ ( ∃ 𝑘 ∈ 𝐾 𝑈 = ( 𝑘 · 𝑋 ) → 𝑈 ∈ V ) |
| 12 | eqeq1 | ⊢ ( 𝑣 = 𝑈 → ( 𝑣 = ( 𝑘 · 𝑋 ) ↔ 𝑈 = ( 𝑘 · 𝑋 ) ) ) | |
| 13 | 12 | rexbidv | ⊢ ( 𝑣 = 𝑈 → ( ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) ↔ ∃ 𝑘 ∈ 𝐾 𝑈 = ( 𝑘 · 𝑋 ) ) ) |
| 14 | 11 13 | elab3 | ⊢ ( 𝑈 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 𝑣 = ( 𝑘 · 𝑋 ) } ↔ ∃ 𝑘 ∈ 𝐾 𝑈 = ( 𝑘 · 𝑋 ) ) |
| 15 | 7 14 | bitrdi | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑈 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ 𝐾 𝑈 = ( 𝑘 · 𝑋 ) ) ) |