This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation of a scalar multiplication in an associative algebra: ( a .x. X ) ^ N = ( a ^ N ) .X. ( X ^ N ) . (Contributed by AV, 26-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | assamulgscm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| assamulgscm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| assamulgscm.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| assamulgscm.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| assamulgscm.g | ⊢ 𝐺 = ( mulGrp ‘ 𝐹 ) | ||
| assamulgscm.p | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| assamulgscm.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑊 ) | ||
| assamulgscm.e | ⊢ 𝐸 = ( .g ‘ 𝐻 ) | ||
| Assertion | assamulgscm | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assamulgscm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | assamulgscm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | assamulgscm.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 4 | assamulgscm.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | assamulgscm.g | ⊢ 𝐺 = ( mulGrp ‘ 𝐹 ) | |
| 6 | assamulgscm.p | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 7 | assamulgscm.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑊 ) | |
| 8 | assamulgscm.e | ⊢ 𝐸 = ( .g ‘ 𝐻 ) | |
| 9 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( 0 𝐸 ( 𝐴 · 𝑋 ) ) ) | |
| 10 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 𝐴 ) = ( 0 ↑ 𝐴 ) ) | |
| 11 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 𝐸 𝑋 ) = ( 0 𝐸 𝑋 ) ) | |
| 12 | 10 11 | oveq12d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) = ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) ) |
| 13 | 9 12 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ↔ ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ) ↔ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) ) ) ) |
| 15 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ) | |
| 16 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝐴 ) = ( 𝑦 ↑ 𝐴 ) ) | |
| 17 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐸 𝑋 ) = ( 𝑦 𝐸 𝑋 ) ) | |
| 18 | 16 17 | oveq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) |
| 19 | 15 18 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ↔ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ) ↔ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) ) ) |
| 21 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) ) | |
| 22 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ↑ 𝐴 ) = ( ( 𝑦 + 1 ) ↑ 𝐴 ) ) | |
| 23 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 𝐸 𝑋 ) = ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) | |
| 24 | 22 23 | oveq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 25 | 21 24 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ↔ ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) |
| 26 | 25 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ) ↔ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) ) |
| 27 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) ) | |
| 28 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 ↑ 𝐴 ) = ( 𝑁 ↑ 𝐴 ) ) | |
| 29 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 𝐸 𝑋 ) = ( 𝑁 𝐸 𝑋 ) ) | |
| 30 | 28 29 | oveq12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) |
| 31 | 27 30 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ↔ ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) ) |
| 32 | 31 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ) ↔ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) ) ) |
| 33 | 1 2 3 4 5 6 7 8 | assamulgscmlem1 | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) ) |
| 34 | 1 2 3 4 5 6 7 8 | assamulgscmlem2 | ⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) ) |
| 35 | 34 | a2d | ⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) ) |
| 36 | 14 20 26 32 33 35 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) ) |
| 37 | 36 | exp4c | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ 𝐵 → ( 𝑋 ∈ 𝑉 → ( 𝑊 ∈ AssAlg → ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) ) ) ) |
| 38 | 37 | 3imp | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ∈ AssAlg → ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) ) |
| 39 | 38 | impcom | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) |