This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings: ( X + A ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( X ^ k ) ) . (Contributed by AV, 25-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cply1binom.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| cply1binom.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| cply1binom.a | ⊢ + = ( +g ‘ 𝑃 ) | ||
| cply1binom.m | ⊢ × = ( .r ‘ 𝑃 ) | ||
| cply1binom.t | ⊢ · = ( .g ‘ 𝑃 ) | ||
| cply1binom.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) | ||
| cply1binom.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| cply1binom.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| Assertion | lply1binom | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑁 ↑ ( 𝑋 + 𝐴 ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cply1binom.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | cply1binom.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 3 | cply1binom.a | ⊢ + = ( +g ‘ 𝑃 ) | |
| 4 | cply1binom.m | ⊢ × = ( .r ‘ 𝑃 ) | |
| 5 | cply1binom.t | ⊢ · = ( .g ‘ 𝑃 ) | |
| 6 | cply1binom.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) | |
| 7 | cply1binom.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 8 | cply1binom.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 9 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 10 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 11 | ringcmn | ⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) | |
| 12 | 9 10 11 | 3syl | ⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CMnd ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝑃 ∈ CMnd ) |
| 14 | 2 1 8 | vr1cl | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 15 | 9 14 | syl | ⊢ ( 𝑅 ∈ CRing → 𝑋 ∈ 𝐵 ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 17 | simp3 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) | |
| 18 | 8 3 | cmncom | ⊢ ( ( 𝑃 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑋 + 𝐴 ) = ( 𝐴 + 𝑋 ) ) |
| 19 | 13 16 17 18 | syl3anc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑋 + 𝐴 ) = ( 𝐴 + 𝑋 ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑁 ↑ ( 𝑋 + 𝐴 ) ) = ( 𝑁 ↑ ( 𝐴 + 𝑋 ) ) ) |
| 21 | 1 | ply1crng | ⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝑃 ∈ CRing ) |
| 23 | simp2 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝑁 ∈ ℕ0 ) | |
| 24 | 8 | eleq2i | ⊢ ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ( Base ‘ 𝑃 ) ) |
| 25 | 24 | biimpi | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ ( Base ‘ 𝑃 ) ) |
| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ( Base ‘ 𝑃 ) ) |
| 27 | 15 8 | eleqtrdi | ⊢ ( 𝑅 ∈ CRing → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 29 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 30 | 29 4 5 3 6 7 | crngbinom | ⊢ ( ( ( 𝑃 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝑃 ) ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑁 ↑ ( 𝐴 + 𝑋 ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 31 | 22 23 26 28 30 | syl22anc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑁 ↑ ( 𝐴 + 𝑋 ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 32 | 20 31 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑁 ↑ ( 𝑋 + 𝐴 ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |