This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Fermat's little theorem for polynomials in a commutative ring F of characteristic P prime: we have the polynomial equation ( X + A ) ^ P = ( ( X ^ P ) + A ) . (Contributed by Thierry Arnoux, 9-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1fermltlchr.w | ⊢ 𝑊 = ( Poly1 ‘ 𝐹 ) | |
| ply1fermltlchr.x | ⊢ 𝑋 = ( var1 ‘ 𝐹 ) | ||
| ply1fermltlchr.l | ⊢ + = ( +g ‘ 𝑊 ) | ||
| ply1fermltlchr.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑊 ) | ||
| ply1fermltlchr.t | ⊢ ↑ = ( .g ‘ 𝑁 ) | ||
| ply1fermltlchr.c | ⊢ 𝐶 = ( algSc ‘ 𝑊 ) | ||
| ply1fermltlchr.a | ⊢ 𝐴 = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) | ||
| ply1fermltlchr.p | ⊢ 𝑃 = ( chr ‘ 𝐹 ) | ||
| ply1fermltlchr.f | ⊢ ( 𝜑 → 𝐹 ∈ CRing ) | ||
| ply1fermltlchr.1 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| ply1fermltlchr.2 | ⊢ ( 𝜑 → 𝐸 ∈ ℤ ) | ||
| Assertion | ply1fermltlchr | ⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑋 + 𝐴 ) ) = ( ( 𝑃 ↑ 𝑋 ) + 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1fermltlchr.w | ⊢ 𝑊 = ( Poly1 ‘ 𝐹 ) | |
| 2 | ply1fermltlchr.x | ⊢ 𝑋 = ( var1 ‘ 𝐹 ) | |
| 3 | ply1fermltlchr.l | ⊢ + = ( +g ‘ 𝑊 ) | |
| 4 | ply1fermltlchr.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑊 ) | |
| 5 | ply1fermltlchr.t | ⊢ ↑ = ( .g ‘ 𝑁 ) | |
| 6 | ply1fermltlchr.c | ⊢ 𝐶 = ( algSc ‘ 𝑊 ) | |
| 7 | ply1fermltlchr.a | ⊢ 𝐴 = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) | |
| 8 | ply1fermltlchr.p | ⊢ 𝑃 = ( chr ‘ 𝐹 ) | |
| 9 | ply1fermltlchr.f | ⊢ ( 𝜑 → 𝐹 ∈ CRing ) | |
| 10 | ply1fermltlchr.1 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 11 | ply1fermltlchr.2 | ⊢ ( 𝜑 → 𝐸 ∈ ℤ ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 13 | 4 | fveq2i | ⊢ ( .g ‘ 𝑁 ) = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
| 14 | 5 13 | eqtri | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
| 15 | eqid | ⊢ ( chr ‘ 𝑊 ) = ( chr ‘ 𝑊 ) | |
| 16 | 1 | ply1crng | ⊢ ( 𝐹 ∈ CRing → 𝑊 ∈ CRing ) |
| 17 | 9 16 | syl | ⊢ ( 𝜑 → 𝑊 ∈ CRing ) |
| 18 | 1 | ply1chr | ⊢ ( 𝐹 ∈ CRing → ( chr ‘ 𝑊 ) = ( chr ‘ 𝐹 ) ) |
| 19 | 9 18 | syl | ⊢ ( 𝜑 → ( chr ‘ 𝑊 ) = ( chr ‘ 𝐹 ) ) |
| 20 | 19 8 | eqtr4di | ⊢ ( 𝜑 → ( chr ‘ 𝑊 ) = 𝑃 ) |
| 21 | 20 10 | eqeltrd | ⊢ ( 𝜑 → ( chr ‘ 𝑊 ) ∈ ℙ ) |
| 22 | 9 | crngringd | ⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 23 | 2 1 12 | vr1cl | ⊢ ( 𝐹 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 25 | eqid | ⊢ ( ℤRHom ‘ 𝐹 ) = ( ℤRHom ‘ 𝐹 ) | |
| 26 | 25 | zrhrhm | ⊢ ( 𝐹 ∈ Ring → ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) ) |
| 27 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 28 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 29 | 27 28 | rhmf | ⊢ ( ( ℤRHom ‘ 𝐹 ) ∈ ( ℤring RingHom 𝐹 ) → ( ℤRHom ‘ 𝐹 ) : ℤ ⟶ ( Base ‘ 𝐹 ) ) |
| 30 | 22 26 29 | 3syl | ⊢ ( 𝜑 → ( ℤRHom ‘ 𝐹 ) : ℤ ⟶ ( Base ‘ 𝐹 ) ) |
| 31 | 30 11 | ffvelcdmd | ⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝐹 ) ) |
| 32 | 1 6 28 12 | ply1sclcl | ⊢ ( ( 𝐹 ∈ Ring ∧ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝐹 ) ) → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 33 | 22 31 32 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ∈ ( Base ‘ 𝑊 ) ) |
| 34 | 7 33 | eqeltrid | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝑊 ) ) |
| 35 | 12 3 14 15 17 21 24 34 | freshmansdream | ⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ ( 𝑋 + 𝐴 ) ) = ( ( ( chr ‘ 𝑊 ) ↑ 𝑋 ) + ( ( chr ‘ 𝑊 ) ↑ 𝐴 ) ) ) |
| 36 | 20 | oveq1d | ⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ ( 𝑋 + 𝐴 ) ) = ( 𝑃 ↑ ( 𝑋 + 𝐴 ) ) ) |
| 37 | 20 | oveq1d | ⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ 𝑋 ) = ( 𝑃 ↑ 𝑋 ) ) |
| 38 | 20 | oveq1d | ⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ 𝐴 ) = ( 𝑃 ↑ 𝐴 ) ) |
| 39 | 1 | ply1assa | ⊢ ( 𝐹 ∈ CRing → 𝑊 ∈ AssAlg ) |
| 40 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 41 | 6 40 | asclrhm | ⊢ ( 𝑊 ∈ AssAlg → 𝐶 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) ) |
| 42 | 9 39 41 | 3syl | ⊢ ( 𝜑 → 𝐶 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) ) |
| 43 | 9 | crnggrpd | ⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 44 | 1 | ply1sca | ⊢ ( 𝐹 ∈ Grp → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
| 45 | 43 44 | syl | ⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
| 46 | 45 | oveq1d | ⊢ ( 𝜑 → ( 𝐹 RingHom 𝑊 ) = ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) ) |
| 47 | 42 46 | eleqtrrd | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 RingHom 𝑊 ) ) |
| 48 | eqid | ⊢ ( mulGrp ‘ 𝐹 ) = ( mulGrp ‘ 𝐹 ) | |
| 49 | 48 4 | rhmmhm | ⊢ ( 𝐶 ∈ ( 𝐹 RingHom 𝑊 ) → 𝐶 ∈ ( ( mulGrp ‘ 𝐹 ) MndHom 𝑁 ) ) |
| 50 | 47 49 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ( ( mulGrp ‘ 𝐹 ) MndHom 𝑁 ) ) |
| 51 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 52 | nnnn0 | ⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) | |
| 53 | 10 51 52 | 3syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
| 54 | 48 28 | mgpbas | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ ( mulGrp ‘ 𝐹 ) ) |
| 55 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝐹 ) ) = ( .g ‘ ( mulGrp ‘ 𝐹 ) ) | |
| 56 | 54 55 5 | mhmmulg | ⊢ ( ( 𝐶 ∈ ( ( mulGrp ‘ 𝐹 ) MndHom 𝑁 ) ∧ 𝑃 ∈ ℕ0 ∧ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ∈ ( Base ‘ 𝐹 ) ) → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐹 ) ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) = ( 𝑃 ↑ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) ) |
| 57 | 50 53 31 56 | syl3anc | ⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐹 ) ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) = ( 𝑃 ↑ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) ) |
| 58 | 7 | a1i | ⊢ ( 𝜑 → 𝐴 = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
| 59 | 58 | oveq2d | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝐴 ) = ( 𝑃 ↑ ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) ) |
| 60 | 57 59 | eqtr4d | ⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐹 ) ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) = ( 𝑃 ↑ 𝐴 ) ) |
| 61 | eqid | ⊢ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) | |
| 62 | 8 28 55 61 10 11 9 | fermltlchr | ⊢ ( 𝜑 → ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐹 ) ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) = ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) |
| 63 | 62 | fveq2d | ⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐹 ) ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) = ( 𝐶 ‘ ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) |
| 64 | 63 7 | eqtr4di | ⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝑃 ( .g ‘ ( mulGrp ‘ 𝐹 ) ) ( ( ℤRHom ‘ 𝐹 ) ‘ 𝐸 ) ) ) = 𝐴 ) |
| 65 | 38 60 64 | 3eqtr2d | ⊢ ( 𝜑 → ( ( chr ‘ 𝑊 ) ↑ 𝐴 ) = 𝐴 ) |
| 66 | 37 65 | oveq12d | ⊢ ( 𝜑 → ( ( ( chr ‘ 𝑊 ) ↑ 𝑋 ) + ( ( chr ‘ 𝑊 ) ↑ 𝐴 ) ) = ( ( 𝑃 ↑ 𝑋 ) + 𝐴 ) ) |
| 67 | 35 36 66 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑋 + 𝐴 ) ) = ( ( 𝑃 ↑ 𝑋 ) + 𝐴 ) ) |