This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnn0z.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnn0z.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnn0z.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | mulgnn0z | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnn0z.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnn0z.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnn0z.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 5 | id | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) | |
| 6 | 1 3 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 7 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 8 | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 0 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 0 } ) ) | |
| 9 | 1 7 2 8 | mulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 0 ∈ 𝐵 ) → ( 𝑁 · 0 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 0 } ) ) ‘ 𝑁 ) ) |
| 10 | 5 6 9 | syl2anr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 0 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 0 } ) ) ‘ 𝑁 ) ) |
| 11 | 1 7 3 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 0 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 12 | 6 11 | mpdan | ⊢ ( 𝐺 ∈ Mnd → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 14 | simpr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) | |
| 15 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 16 | 14 15 | eleqtrdi | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 17 | 6 | adantr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → 0 ∈ 𝐵 ) |
| 18 | elfznn | ⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 𝑥 ∈ ℕ ) | |
| 19 | fvconst2g | ⊢ ( ( 0 ∈ 𝐵 ∧ 𝑥 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑥 ) = 0 ) | |
| 20 | 17 18 19 | syl2an | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 21 | 13 16 20 | seqid3 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 0 } ) ) ‘ 𝑁 ) = 0 ) |
| 22 | 10 21 | eqtrd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 0 ) = 0 ) |
| 23 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 · 0 ) = ( 0 · 0 ) ) | |
| 24 | 1 3 2 | mulg0 | ⊢ ( 0 ∈ 𝐵 → ( 0 · 0 ) = 0 ) |
| 25 | 6 24 | syl | ⊢ ( 𝐺 ∈ Mnd → ( 0 · 0 ) = 0 ) |
| 26 | 23 25 | sylan9eqr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 = 0 ) → ( 𝑁 · 0 ) = 0 ) |
| 27 | 22 26 | jaodan | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( 𝑁 · 0 ) = 0 ) |
| 28 | 4 27 | sylan2b | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 0 ) = 0 ) |