This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonnegative integer exponentiation of a product. Proposition 10-4.2(c) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑗 = 0 → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 · 𝐵 ) ↑ 0 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑗 = 0 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 0 ) ) | |
| 3 | oveq2 | ⊢ ( 𝑗 = 0 → ( 𝐵 ↑ 𝑗 ) = ( 𝐵 ↑ 0 ) ) | |
| 4 | 2 3 | oveq12d | ⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) |
| 5 | 1 4 | eqeq12d | ⊢ ( 𝑗 = 0 → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ↔ ( ( 𝐴 · 𝐵 ) ↑ 0 ) = ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑗 = 0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 0 ) = ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) ) | |
| 8 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 9 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐵 ↑ 𝑗 ) = ( 𝐵 ↑ 𝑘 ) ) | |
| 10 | 8 9 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) |
| 11 | 7 10 | eqeq12d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ↔ ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) ) | |
| 14 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) | |
| 15 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐵 ↑ 𝑗 ) = ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) | |
| 16 | 14 15 | oveq12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) |
| 17 | 13 16 | eqeq12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ↔ ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 19 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) ) | |
| 20 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑁 ) ) | |
| 21 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝐵 ↑ 𝑗 ) = ( 𝐵 ↑ 𝑁 ) ) | |
| 22 | 20 21 | oveq12d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) |
| 23 | 19 22 | eqeq12d | ⊢ ( 𝑗 = 𝑁 → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ↔ ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑗 = 𝑁 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) · ( 𝐵 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) ) ) |
| 25 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) | |
| 26 | exp0 | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ℂ → ( ( 𝐴 · 𝐵 ) ↑ 0 ) = 1 ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 0 ) = 1 ) |
| 28 | exp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) | |
| 29 | exp0 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 0 ) = 1 ) | |
| 30 | 28 29 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) = ( 1 · 1 ) ) |
| 31 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 32 | 30 31 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) = 1 ) |
| 33 | 27 32 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 0 ) = ( ( 𝐴 ↑ 0 ) · ( 𝐵 ↑ 0 ) ) ) |
| 34 | expp1 | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) · ( 𝐴 · 𝐵 ) ) ) | |
| 35 | 25 34 | sylan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) · ( 𝐴 · 𝐵 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) · ( 𝐴 · 𝐵 ) ) ) |
| 37 | oveq1 | ⊢ ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) · ( 𝐴 · 𝐵 ) ) = ( ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 · 𝐵 ) ) ) | |
| 38 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 39 | expcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) | |
| 40 | 38 39 | anim12i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ) → ( ( 𝐴 ↑ 𝑘 ) ∈ ℂ ∧ ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) ) |
| 41 | 40 | anandirs | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) ∈ ℂ ∧ ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) ) |
| 42 | simpl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) | |
| 43 | mul4 | ⊢ ( ( ( ( 𝐴 ↑ 𝑘 ) ∈ ℂ ∧ ( 𝐵 ↑ 𝑘 ) ∈ ℂ ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) → ( ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 · 𝐵 ) ) = ( ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) · ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) ) | |
| 44 | 41 42 43 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 · 𝐵 ) ) = ( ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) · ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) ) |
| 45 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) | |
| 46 | 45 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 47 | expp1 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) | |
| 48 | 47 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) |
| 49 | 46 48 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) · ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) ) |
| 50 | 44 49 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) · ( 𝐴 · 𝐵 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) |
| 51 | 37 50 | sylan9eqr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) · ( 𝐴 · 𝐵 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) |
| 52 | 36 51 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) |
| 53 | 52 | exp31 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 54 | 53 | com12 | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 55 | 54 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) · ( 𝐵 ↑ 𝑘 ) ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) · ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 56 | 6 12 18 24 33 55 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 57 | 56 | expdcom | ⊢ ( 𝐴 ∈ ℂ → ( 𝐵 ∈ ℂ → ( 𝑁 ∈ ℕ0 → ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) ) ) |
| 58 | 57 | 3imp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 · 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) · ( 𝐵 ↑ 𝑁 ) ) ) |