This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: mp3an with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mp3an3an.1 | ⊢ 𝜑 | |
| mp3an3an.2 | ⊢ ( 𝜓 → 𝜒 ) | ||
| mp3an3an.3 | ⊢ ( 𝜃 → 𝜏 ) | ||
| mp3an3an.4 | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 ) | ||
| Assertion | mp3an3an | ⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an3an.1 | ⊢ 𝜑 | |
| 2 | mp3an3an.2 | ⊢ ( 𝜓 → 𝜒 ) | |
| 3 | mp3an3an.3 | ⊢ ( 𝜃 → 𝜏 ) | |
| 4 | mp3an3an.4 | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 ) | |
| 5 | 1 4 | mp3an1 | ⊢ ( ( 𝜒 ∧ 𝜏 ) → 𝜂 ) |
| 6 | 2 3 5 | syl2an | ⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜂 ) |