This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of closed intervals forms a closed subbasis for the topology on the extended reals. Since our definition of a basis is in terms of open sets, we express this by showing that the complements of closed intervals form an open subbasis for the topology. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lecldbas.1 | ⊢ 𝐹 = ( 𝑥 ∈ ran [,] ↦ ( ℝ* ∖ 𝑥 ) ) | |
| Assertion | lecldbas | ⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ran 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lecldbas.1 | ⊢ 𝐹 = ( 𝑥 ∈ ran [,] ↦ ( ℝ* ∖ 𝑥 ) ) | |
| 2 | eqid | ⊢ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) | |
| 3 | eqid | ⊢ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) | |
| 4 | 2 3 | leordtval2 | ⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) ) |
| 5 | fvex | ⊢ ( fi ‘ ran 𝐹 ) ∈ V | |
| 6 | fvex | ⊢ ( ordTop ‘ ≤ ) ∈ V | |
| 7 | iccf | ⊢ [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* | |
| 8 | ffn | ⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → [,] Fn ( ℝ* × ℝ* ) ) | |
| 9 | 7 8 | ax-mp | ⊢ [,] Fn ( ℝ* × ℝ* ) |
| 10 | ovelrn | ⊢ ( [,] Fn ( ℝ* × ℝ* ) → ( 𝑥 ∈ ran [,] ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑥 = ( 𝑎 [,] 𝑏 ) ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ( 𝑥 ∈ ran [,] ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑥 = ( 𝑎 [,] 𝑏 ) ) |
| 12 | difeq2 | ⊢ ( 𝑥 = ( 𝑎 [,] 𝑏 ) → ( ℝ* ∖ 𝑥 ) = ( ℝ* ∖ ( 𝑎 [,] 𝑏 ) ) ) | |
| 13 | iccordt | ⊢ ( 𝑎 [,] 𝑏 ) ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) | |
| 14 | letopuni | ⊢ ℝ* = ∪ ( ordTop ‘ ≤ ) | |
| 15 | 14 | cldopn | ⊢ ( ( 𝑎 [,] 𝑏 ) ∈ ( Clsd ‘ ( ordTop ‘ ≤ ) ) → ( ℝ* ∖ ( 𝑎 [,] 𝑏 ) ) ∈ ( ordTop ‘ ≤ ) ) |
| 16 | 13 15 | ax-mp | ⊢ ( ℝ* ∖ ( 𝑎 [,] 𝑏 ) ) ∈ ( ordTop ‘ ≤ ) |
| 17 | 12 16 | eqeltrdi | ⊢ ( 𝑥 = ( 𝑎 [,] 𝑏 ) → ( ℝ* ∖ 𝑥 ) ∈ ( ordTop ‘ ≤ ) ) |
| 18 | 17 | rexlimivw | ⊢ ( ∃ 𝑏 ∈ ℝ* 𝑥 = ( 𝑎 [,] 𝑏 ) → ( ℝ* ∖ 𝑥 ) ∈ ( ordTop ‘ ≤ ) ) |
| 19 | 18 | rexlimivw | ⊢ ( ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑥 = ( 𝑎 [,] 𝑏 ) → ( ℝ* ∖ 𝑥 ) ∈ ( ordTop ‘ ≤ ) ) |
| 20 | 11 19 | sylbi | ⊢ ( 𝑥 ∈ ran [,] → ( ℝ* ∖ 𝑥 ) ∈ ( ordTop ‘ ≤ ) ) |
| 21 | 1 20 | fmpti | ⊢ 𝐹 : ran [,] ⟶ ( ordTop ‘ ≤ ) |
| 22 | frn | ⊢ ( 𝐹 : ran [,] ⟶ ( ordTop ‘ ≤ ) → ran 𝐹 ⊆ ( ordTop ‘ ≤ ) ) | |
| 23 | 21 22 | ax-mp | ⊢ ran 𝐹 ⊆ ( ordTop ‘ ≤ ) |
| 24 | 6 23 | ssexi | ⊢ ran 𝐹 ∈ V |
| 25 | eqid | ⊢ ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) | |
| 26 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 27 | fnovrn | ⊢ ( ( [,] Fn ( ℝ* × ℝ* ) ∧ -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( -∞ [,] 𝑦 ) ∈ ran [,] ) | |
| 28 | 9 26 27 | mp3an12 | ⊢ ( 𝑦 ∈ ℝ* → ( -∞ [,] 𝑦 ) ∈ ran [,] ) |
| 29 | 26 | a1i | ⊢ ( 𝑦 ∈ ℝ* → -∞ ∈ ℝ* ) |
| 30 | id | ⊢ ( 𝑦 ∈ ℝ* → 𝑦 ∈ ℝ* ) | |
| 31 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 32 | 31 | a1i | ⊢ ( 𝑦 ∈ ℝ* → +∞ ∈ ℝ* ) |
| 33 | mnfle | ⊢ ( 𝑦 ∈ ℝ* → -∞ ≤ 𝑦 ) | |
| 34 | pnfge | ⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ +∞ ) | |
| 35 | df-icc | ⊢ [,] = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 ≤ 𝑐 ∧ 𝑐 ≤ 𝑏 ) } ) | |
| 36 | df-ioc | ⊢ (,] = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 < 𝑐 ∧ 𝑐 ≤ 𝑏 ) } ) | |
| 37 | xrltnle | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 𝑦 < 𝑧 ↔ ¬ 𝑧 ≤ 𝑦 ) ) | |
| 38 | xrletr | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑧 ≤ 𝑦 ∧ 𝑦 ≤ +∞ ) → 𝑧 ≤ +∞ ) ) | |
| 39 | xrlelttr | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( -∞ ≤ 𝑦 ∧ 𝑦 < 𝑧 ) → -∞ < 𝑧 ) ) | |
| 40 | xrltle | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( -∞ < 𝑧 → -∞ ≤ 𝑧 ) ) | |
| 41 | 40 | 3adant2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( -∞ < 𝑧 → -∞ ≤ 𝑧 ) ) |
| 42 | 39 41 | syld | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( -∞ ≤ 𝑦 ∧ 𝑦 < 𝑧 ) → -∞ ≤ 𝑧 ) ) |
| 43 | 35 36 37 35 38 42 | ixxun | ⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ ≤ 𝑦 ∧ 𝑦 ≤ +∞ ) ) → ( ( -∞ [,] 𝑦 ) ∪ ( 𝑦 (,] +∞ ) ) = ( -∞ [,] +∞ ) ) |
| 44 | 29 30 32 33 34 43 | syl32anc | ⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ [,] 𝑦 ) ∪ ( 𝑦 (,] +∞ ) ) = ( -∞ [,] +∞ ) ) |
| 45 | iccmax | ⊢ ( -∞ [,] +∞ ) = ℝ* | |
| 46 | 44 45 | eqtrdi | ⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ [,] 𝑦 ) ∪ ( 𝑦 (,] +∞ ) ) = ℝ* ) |
| 47 | iccssxr | ⊢ ( -∞ [,] 𝑦 ) ⊆ ℝ* | |
| 48 | 35 36 37 | ixxdisj | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( -∞ [,] 𝑦 ) ∩ ( 𝑦 (,] +∞ ) ) = ∅ ) |
| 49 | 26 31 48 | mp3an13 | ⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ [,] 𝑦 ) ∩ ( 𝑦 (,] +∞ ) ) = ∅ ) |
| 50 | uneqdifeq | ⊢ ( ( ( -∞ [,] 𝑦 ) ⊆ ℝ* ∧ ( ( -∞ [,] 𝑦 ) ∩ ( 𝑦 (,] +∞ ) ) = ∅ ) → ( ( ( -∞ [,] 𝑦 ) ∪ ( 𝑦 (,] +∞ ) ) = ℝ* ↔ ( ℝ* ∖ ( -∞ [,] 𝑦 ) ) = ( 𝑦 (,] +∞ ) ) ) | |
| 51 | 47 49 50 | sylancr | ⊢ ( 𝑦 ∈ ℝ* → ( ( ( -∞ [,] 𝑦 ) ∪ ( 𝑦 (,] +∞ ) ) = ℝ* ↔ ( ℝ* ∖ ( -∞ [,] 𝑦 ) ) = ( 𝑦 (,] +∞ ) ) ) |
| 52 | 46 51 | mpbid | ⊢ ( 𝑦 ∈ ℝ* → ( ℝ* ∖ ( -∞ [,] 𝑦 ) ) = ( 𝑦 (,] +∞ ) ) |
| 53 | 52 | eqcomd | ⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 (,] +∞ ) = ( ℝ* ∖ ( -∞ [,] 𝑦 ) ) ) |
| 54 | difeq2 | ⊢ ( 𝑥 = ( -∞ [,] 𝑦 ) → ( ℝ* ∖ 𝑥 ) = ( ℝ* ∖ ( -∞ [,] 𝑦 ) ) ) | |
| 55 | 54 | rspceeqv | ⊢ ( ( ( -∞ [,] 𝑦 ) ∈ ran [,] ∧ ( 𝑦 (,] +∞ ) = ( ℝ* ∖ ( -∞ [,] 𝑦 ) ) ) → ∃ 𝑥 ∈ ran [,] ( 𝑦 (,] +∞ ) = ( ℝ* ∖ 𝑥 ) ) |
| 56 | 28 53 55 | syl2anc | ⊢ ( 𝑦 ∈ ℝ* → ∃ 𝑥 ∈ ran [,] ( 𝑦 (,] +∞ ) = ( ℝ* ∖ 𝑥 ) ) |
| 57 | xrex | ⊢ ℝ* ∈ V | |
| 58 | 57 | difexi | ⊢ ( ℝ* ∖ 𝑥 ) ∈ V |
| 59 | 1 58 | elrnmpti | ⊢ ( ( 𝑦 (,] +∞ ) ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ran [,] ( 𝑦 (,] +∞ ) = ( ℝ* ∖ 𝑥 ) ) |
| 60 | 56 59 | sylibr | ⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 (,] +∞ ) ∈ ran 𝐹 ) |
| 61 | 25 60 | fmpti | ⊢ ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) : ℝ* ⟶ ran 𝐹 |
| 62 | frn | ⊢ ( ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) : ℝ* ⟶ ran 𝐹 → ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ⊆ ran 𝐹 ) | |
| 63 | 61 62 | ax-mp | ⊢ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ⊆ ran 𝐹 |
| 64 | eqid | ⊢ ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) | |
| 65 | fnovrn | ⊢ ( ( [,] Fn ( ℝ* × ℝ* ) ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑦 [,] +∞ ) ∈ ran [,] ) | |
| 66 | 9 31 65 | mp3an13 | ⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 [,] +∞ ) ∈ ran [,] ) |
| 67 | df-ico | ⊢ [,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 ≤ 𝑐 ∧ 𝑐 < 𝑏 ) } ) | |
| 68 | xrlenlt | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 𝑦 ≤ 𝑧 ↔ ¬ 𝑧 < 𝑦 ) ) | |
| 69 | xrltletr | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑧 < 𝑦 ∧ 𝑦 ≤ +∞ ) → 𝑧 < +∞ ) ) | |
| 70 | xrltle | ⊢ ( ( 𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑧 < +∞ → 𝑧 ≤ +∞ ) ) | |
| 71 | 70 | 3adant2 | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑧 < +∞ → 𝑧 ≤ +∞ ) ) |
| 72 | 69 71 | syld | ⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑧 < 𝑦 ∧ 𝑦 ≤ +∞ ) → 𝑧 ≤ +∞ ) ) |
| 73 | xrletr | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( -∞ ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → -∞ ≤ 𝑧 ) ) | |
| 74 | 67 35 68 35 72 73 | ixxun | ⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ ≤ 𝑦 ∧ 𝑦 ≤ +∞ ) ) → ( ( -∞ [,) 𝑦 ) ∪ ( 𝑦 [,] +∞ ) ) = ( -∞ [,] +∞ ) ) |
| 75 | 29 30 32 33 34 74 | syl32anc | ⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ [,) 𝑦 ) ∪ ( 𝑦 [,] +∞ ) ) = ( -∞ [,] +∞ ) ) |
| 76 | uncom | ⊢ ( ( -∞ [,) 𝑦 ) ∪ ( 𝑦 [,] +∞ ) ) = ( ( 𝑦 [,] +∞ ) ∪ ( -∞ [,) 𝑦 ) ) | |
| 77 | 75 76 45 | 3eqtr3g | ⊢ ( 𝑦 ∈ ℝ* → ( ( 𝑦 [,] +∞ ) ∪ ( -∞ [,) 𝑦 ) ) = ℝ* ) |
| 78 | iccssxr | ⊢ ( 𝑦 [,] +∞ ) ⊆ ℝ* | |
| 79 | incom | ⊢ ( ( 𝑦 [,] +∞ ) ∩ ( -∞ [,) 𝑦 ) ) = ( ( -∞ [,) 𝑦 ) ∩ ( 𝑦 [,] +∞ ) ) | |
| 80 | 67 35 68 | ixxdisj | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( -∞ [,) 𝑦 ) ∩ ( 𝑦 [,] +∞ ) ) = ∅ ) |
| 81 | 26 31 80 | mp3an13 | ⊢ ( 𝑦 ∈ ℝ* → ( ( -∞ [,) 𝑦 ) ∩ ( 𝑦 [,] +∞ ) ) = ∅ ) |
| 82 | 79 81 | eqtrid | ⊢ ( 𝑦 ∈ ℝ* → ( ( 𝑦 [,] +∞ ) ∩ ( -∞ [,) 𝑦 ) ) = ∅ ) |
| 83 | uneqdifeq | ⊢ ( ( ( 𝑦 [,] +∞ ) ⊆ ℝ* ∧ ( ( 𝑦 [,] +∞ ) ∩ ( -∞ [,) 𝑦 ) ) = ∅ ) → ( ( ( 𝑦 [,] +∞ ) ∪ ( -∞ [,) 𝑦 ) ) = ℝ* ↔ ( ℝ* ∖ ( 𝑦 [,] +∞ ) ) = ( -∞ [,) 𝑦 ) ) ) | |
| 84 | 78 82 83 | sylancr | ⊢ ( 𝑦 ∈ ℝ* → ( ( ( 𝑦 [,] +∞ ) ∪ ( -∞ [,) 𝑦 ) ) = ℝ* ↔ ( ℝ* ∖ ( 𝑦 [,] +∞ ) ) = ( -∞ [,) 𝑦 ) ) ) |
| 85 | 77 84 | mpbid | ⊢ ( 𝑦 ∈ ℝ* → ( ℝ* ∖ ( 𝑦 [,] +∞ ) ) = ( -∞ [,) 𝑦 ) ) |
| 86 | 85 | eqcomd | ⊢ ( 𝑦 ∈ ℝ* → ( -∞ [,) 𝑦 ) = ( ℝ* ∖ ( 𝑦 [,] +∞ ) ) ) |
| 87 | difeq2 | ⊢ ( 𝑥 = ( 𝑦 [,] +∞ ) → ( ℝ* ∖ 𝑥 ) = ( ℝ* ∖ ( 𝑦 [,] +∞ ) ) ) | |
| 88 | 87 | rspceeqv | ⊢ ( ( ( 𝑦 [,] +∞ ) ∈ ran [,] ∧ ( -∞ [,) 𝑦 ) = ( ℝ* ∖ ( 𝑦 [,] +∞ ) ) ) → ∃ 𝑥 ∈ ran [,] ( -∞ [,) 𝑦 ) = ( ℝ* ∖ 𝑥 ) ) |
| 89 | 66 86 88 | syl2anc | ⊢ ( 𝑦 ∈ ℝ* → ∃ 𝑥 ∈ ran [,] ( -∞ [,) 𝑦 ) = ( ℝ* ∖ 𝑥 ) ) |
| 90 | 1 58 | elrnmpti | ⊢ ( ( -∞ [,) 𝑦 ) ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ran [,] ( -∞ [,) 𝑦 ) = ( ℝ* ∖ 𝑥 ) ) |
| 91 | 89 90 | sylibr | ⊢ ( 𝑦 ∈ ℝ* → ( -∞ [,) 𝑦 ) ∈ ran 𝐹 ) |
| 92 | 64 91 | fmpti | ⊢ ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) : ℝ* ⟶ ran 𝐹 |
| 93 | frn | ⊢ ( ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) : ℝ* ⟶ ran 𝐹 → ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ⊆ ran 𝐹 ) | |
| 94 | 92 93 | ax-mp | ⊢ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ⊆ ran 𝐹 |
| 95 | 63 94 | unssi | ⊢ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ⊆ ran 𝐹 |
| 96 | fiss | ⊢ ( ( ran 𝐹 ∈ V ∧ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ⊆ ran 𝐹 ) → ( fi ‘ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) ⊆ ( fi ‘ ran 𝐹 ) ) | |
| 97 | 24 95 96 | mp2an | ⊢ ( fi ‘ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) ⊆ ( fi ‘ ran 𝐹 ) |
| 98 | tgss | ⊢ ( ( ( fi ‘ ran 𝐹 ) ∈ V ∧ ( fi ‘ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) ⊆ ( fi ‘ ran 𝐹 ) ) → ( topGen ‘ ( fi ‘ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ran 𝐹 ) ) ) | |
| 99 | 5 97 98 | mp2an | ⊢ ( topGen ‘ ( fi ‘ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ran 𝐹 ) ) |
| 100 | 4 99 | eqsstri | ⊢ ( ordTop ‘ ≤ ) ⊆ ( topGen ‘ ( fi ‘ ran 𝐹 ) ) |
| 101 | letop | ⊢ ( ordTop ‘ ≤ ) ∈ Top | |
| 102 | tgfiss | ⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ran 𝐹 ⊆ ( ordTop ‘ ≤ ) ) → ( topGen ‘ ( fi ‘ ran 𝐹 ) ) ⊆ ( ordTop ‘ ≤ ) ) | |
| 103 | 101 23 102 | mp2an | ⊢ ( topGen ‘ ( fi ‘ ran 𝐹 ) ) ⊆ ( ordTop ‘ ≤ ) |
| 104 | 100 103 | eqssi | ⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ran 𝐹 ) ) |